ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2003.02392
25
46

PointLoc: Deep Pose Regressor for LiDAR Point Cloud Localization

5 March 2020
Wei Wang
Bing Wang
Peijun Zhao
Changhao Chen
R. Clark
Bo Yang
Andrew Markham
A. Trigoni
    3DPC
ArXivPDFHTML
Abstract

In this paper, we present a novel end-to-end learning-based LiDAR relocalization framework, termed PointLoc, which infers 6-DoF poses directly using only a single point cloud as input, without requiring a pre-built map. Compared to RGB image-based relocalization, LiDAR frames can provide rich and robust geometric information about a scene. However, LiDAR point clouds are unordered and unstructured making it difficult to apply traditional deep learning regression models for this task. We address this issue by proposing a novel PointNet-style architecture with self-attention to efficiently estimate 6-DoF poses from 360{\deg} LiDAR input frames.Extensive experiments on recently released challenging Oxford Radar RobotCar dataset and real-world robot experiments demonstrate that the proposedmethod can achieve accurate relocalization performance.

View on arXiv
Comments on this paper