ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2003.02237
  4. Cited By
Neural Kernels Without Tangents

Neural Kernels Without Tangents

4 March 2020
Vaishaal Shankar
Alex Fang
Wenshuo Guo
Sara Fridovich-Keil
Ludwig Schmidt
Jonathan Ragan-Kelley
Benjamin Recht
ArXivPDFHTML

Papers citing "Neural Kernels Without Tangents"

23 / 23 papers shown
Title
Universal Sharpness Dynamics in Neural Network Training: Fixed Point Analysis, Edge of Stability, and Route to Chaos
Universal Sharpness Dynamics in Neural Network Training: Fixed Point Analysis, Edge of Stability, and Route to Chaos
Dayal Singh Kalra
Tianyu He
M. Barkeshli
54
4
0
17 Feb 2025
A Simple Algorithm For Scaling Up Kernel Methods
A Simple Algorithm For Scaling Up Kernel Methods
Tengyu Xu
Bryan Kelly
Semyon Malamud
16
0
0
26 Jan 2023
What Can the Neural Tangent Kernel Tell Us About Adversarial Robustness?
What Can the Neural Tangent Kernel Tell Us About Adversarial Robustness?
Nikolaos Tsilivis
Julia Kempe
AAML
44
17
0
11 Oct 2022
Minimalistic Unsupervised Learning with the Sparse Manifold Transform
Minimalistic Unsupervised Learning with the Sparse Manifold Transform
Yubei Chen
Zeyu Yun
Y. Ma
Bruno A. Olshausen
Yann LeCun
52
8
0
30 Sep 2022
Formal Conceptual Views in Neural Networks
Formal Conceptual Views in Neural Networks
Johannes Hirth
Tom Hanika
17
2
0
27 Sep 2022
Can we achieve robustness from data alone?
Can we achieve robustness from data alone?
Nikolaos Tsilivis
Jingtong Su
Julia Kempe
OOD
DD
36
18
0
24 Jul 2022
Largest Eigenvalues of the Conjugate Kernel of Single-Layered Neural
  Networks
Largest Eigenvalues of the Conjugate Kernel of Single-Layered Neural Networks
L. Benigni
Sandrine Péché
42
8
0
13 Jan 2022
Separation of Scales and a Thermodynamic Description of Feature Learning
  in Some CNNs
Separation of Scales and a Thermodynamic Description of Feature Learning in Some CNNs
Inbar Seroussi
Gadi Naveh
Zohar Ringel
33
50
0
31 Dec 2021
Learning with convolution and pooling operations in kernel methods
Learning with convolution and pooling operations in kernel methods
Theodor Misiakiewicz
Song Mei
MLT
15
29
0
16 Nov 2021
VC dimension of partially quantized neural networks in the
  overparametrized regime
VC dimension of partially quantized neural networks in the overparametrized regime
Yutong Wang
Clayton D. Scott
25
1
0
06 Oct 2021
Dataset Distillation with Infinitely Wide Convolutional Networks
Dataset Distillation with Infinitely Wide Convolutional Networks
Timothy Nguyen
Roman Novak
Lechao Xiao
Jaehoon Lee
DD
49
229
0
27 Jul 2021
The Limitations of Large Width in Neural Networks: A Deep Gaussian
  Process Perspective
The Limitations of Large Width in Neural Networks: A Deep Gaussian Process Perspective
Geoff Pleiss
John P. Cunningham
28
24
0
11 Jun 2021
A self consistent theory of Gaussian Processes captures feature learning
  effects in finite CNNs
A self consistent theory of Gaussian Processes captures feature learning effects in finite CNNs
Gadi Naveh
Zohar Ringel
SSL
MLT
36
31
0
08 Jun 2021
Generalization Guarantees for Neural Architecture Search with
  Train-Validation Split
Generalization Guarantees for Neural Architecture Search with Train-Validation Split
Samet Oymak
Mingchen Li
Mahdi Soltanolkotabi
AI4CE
OOD
36
13
0
29 Apr 2021
Explaining Neural Scaling Laws
Explaining Neural Scaling Laws
Yasaman Bahri
Ethan Dyer
Jared Kaplan
Jaehoon Lee
Utkarsh Sharma
27
250
0
12 Feb 2021
Towards Understanding Ensemble, Knowledge Distillation and
  Self-Distillation in Deep Learning
Towards Understanding Ensemble, Knowledge Distillation and Self-Distillation in Deep Learning
Zeyuan Allen-Zhu
Yuanzhi Li
FedML
60
355
0
17 Dec 2020
Dataset Meta-Learning from Kernel Ridge-Regression
Dataset Meta-Learning from Kernel Ridge-Regression
Timothy Nguyen
Zhourung Chen
Jaehoon Lee
DD
36
238
0
30 Oct 2020
Stable ResNet
Stable ResNet
Soufiane Hayou
Eugenio Clerico
Bo He
George Deligiannidis
Arnaud Doucet
Judith Rousseau
ODL
SSeg
46
51
0
24 Oct 2020
Kernel Alignment Risk Estimator: Risk Prediction from Training Data
Kernel Alignment Risk Estimator: Risk Prediction from Training Data
Arthur Jacot
Berfin cSimcsek
Francesco Spadaro
Clément Hongler
Franck Gabriel
22
67
0
17 Jun 2020
Modularizing Deep Learning via Pairwise Learning With Kernels
Modularizing Deep Learning via Pairwise Learning With Kernels
Shiyu Duan
Shujian Yu
José C. Príncipe
MoMe
27
20
0
12 May 2020
Convex Geometry and Duality of Over-parameterized Neural Networks
Convex Geometry and Duality of Over-parameterized Neural Networks
Tolga Ergen
Mert Pilanci
MLT
42
54
0
25 Feb 2020
Self-Distillation Amplifies Regularization in Hilbert Space
Self-Distillation Amplifies Regularization in Hilbert Space
H. Mobahi
Mehrdad Farajtabar
Peter L. Bartlett
19
226
0
13 Feb 2020
Implicit Self-Regularization in Deep Neural Networks: Evidence from
  Random Matrix Theory and Implications for Learning
Implicit Self-Regularization in Deep Neural Networks: Evidence from Random Matrix Theory and Implications for Learning
Charles H. Martin
Michael W. Mahoney
AI4CE
35
191
0
02 Oct 2018
1