Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2003.02237
Cited By
Neural Kernels Without Tangents
4 March 2020
Vaishaal Shankar
Alex Fang
Wenshuo Guo
Sara Fridovich-Keil
Ludwig Schmidt
Jonathan Ragan-Kelley
Benjamin Recht
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Neural Kernels Without Tangents"
23 / 23 papers shown
Title
Universal Sharpness Dynamics in Neural Network Training: Fixed Point Analysis, Edge of Stability, and Route to Chaos
Dayal Singh Kalra
Tianyu He
M. Barkeshli
54
4
0
17 Feb 2025
A Simple Algorithm For Scaling Up Kernel Methods
Tengyu Xu
Bryan Kelly
Semyon Malamud
16
0
0
26 Jan 2023
What Can the Neural Tangent Kernel Tell Us About Adversarial Robustness?
Nikolaos Tsilivis
Julia Kempe
AAML
44
17
0
11 Oct 2022
Minimalistic Unsupervised Learning with the Sparse Manifold Transform
Yubei Chen
Zeyu Yun
Y. Ma
Bruno A. Olshausen
Yann LeCun
52
8
0
30 Sep 2022
Formal Conceptual Views in Neural Networks
Johannes Hirth
Tom Hanika
17
2
0
27 Sep 2022
Can we achieve robustness from data alone?
Nikolaos Tsilivis
Jingtong Su
Julia Kempe
OOD
DD
36
18
0
24 Jul 2022
Largest Eigenvalues of the Conjugate Kernel of Single-Layered Neural Networks
L. Benigni
Sandrine Péché
42
8
0
13 Jan 2022
Separation of Scales and a Thermodynamic Description of Feature Learning in Some CNNs
Inbar Seroussi
Gadi Naveh
Zohar Ringel
33
50
0
31 Dec 2021
Learning with convolution and pooling operations in kernel methods
Theodor Misiakiewicz
Song Mei
MLT
15
29
0
16 Nov 2021
VC dimension of partially quantized neural networks in the overparametrized regime
Yutong Wang
Clayton D. Scott
25
1
0
06 Oct 2021
Dataset Distillation with Infinitely Wide Convolutional Networks
Timothy Nguyen
Roman Novak
Lechao Xiao
Jaehoon Lee
DD
49
229
0
27 Jul 2021
The Limitations of Large Width in Neural Networks: A Deep Gaussian Process Perspective
Geoff Pleiss
John P. Cunningham
28
24
0
11 Jun 2021
A self consistent theory of Gaussian Processes captures feature learning effects in finite CNNs
Gadi Naveh
Zohar Ringel
SSL
MLT
36
31
0
08 Jun 2021
Generalization Guarantees for Neural Architecture Search with Train-Validation Split
Samet Oymak
Mingchen Li
Mahdi Soltanolkotabi
AI4CE
OOD
36
13
0
29 Apr 2021
Explaining Neural Scaling Laws
Yasaman Bahri
Ethan Dyer
Jared Kaplan
Jaehoon Lee
Utkarsh Sharma
27
250
0
12 Feb 2021
Towards Understanding Ensemble, Knowledge Distillation and Self-Distillation in Deep Learning
Zeyuan Allen-Zhu
Yuanzhi Li
FedML
60
355
0
17 Dec 2020
Dataset Meta-Learning from Kernel Ridge-Regression
Timothy Nguyen
Zhourung Chen
Jaehoon Lee
DD
36
238
0
30 Oct 2020
Stable ResNet
Soufiane Hayou
Eugenio Clerico
Bo He
George Deligiannidis
Arnaud Doucet
Judith Rousseau
ODL
SSeg
46
51
0
24 Oct 2020
Kernel Alignment Risk Estimator: Risk Prediction from Training Data
Arthur Jacot
Berfin cSimcsek
Francesco Spadaro
Clément Hongler
Franck Gabriel
22
67
0
17 Jun 2020
Modularizing Deep Learning via Pairwise Learning With Kernels
Shiyu Duan
Shujian Yu
José C. Príncipe
MoMe
27
20
0
12 May 2020
Convex Geometry and Duality of Over-parameterized Neural Networks
Tolga Ergen
Mert Pilanci
MLT
42
54
0
25 Feb 2020
Self-Distillation Amplifies Regularization in Hilbert Space
H. Mobahi
Mehrdad Farajtabar
Peter L. Bartlett
19
226
0
13 Feb 2020
Implicit Self-Regularization in Deep Neural Networks: Evidence from Random Matrix Theory and Implications for Learning
Charles H. Martin
Michael W. Mahoney
AI4CE
35
191
0
02 Oct 2018
1