ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2003.01912
  4. Cited By
Restoration of Fragmentary Babylonian Texts Using Recurrent Neural
  Networks

Restoration of Fragmentary Babylonian Texts Using Recurrent Neural Networks

4 March 2020
Ethan Fetaya
Yonatan Lifshitz
Elad Aaron
S. Gordin
    AI4CE
ArXiv (abs)PDFHTML

Papers citing "Restoration of Fragmentary Babylonian Texts Using Recurrent Neural Networks"

5 / 5 papers shown
Title
Restoring ancient text using deep learning: a case study on Greek
  epigraphy
Restoring ancient text using deep learning: a case study on Greek epigraphy
Yannis Assael
Thea Sommerschield
J. Prag
92
63
0
14 Oct 2019
An Unsupervised Character-Aware Neural Approach to Word and Context
  Representation Learning
An Unsupervised Character-Aware Neural Approach to Word and Context Representation Learning
G. Marra
Andrea Zugarini
S. Melacci
Marco Maggini
SSL
39
14
0
19 Jul 2019
Effective Character-augmented Word Embedding for Machine Reading
  Comprehension
Effective Character-augmented Word Embedding for Machine Reading Comprehension
Zhuosheng Zhang
Yafang Huang
Peng Fei Zhu
Hai Zhao
RALM
54
17
0
07 Aug 2018
Character-Aware Neural Language Models
Character-Aware Neural Language Models
Yoon Kim
Yacine Jernite
David Sontag
Alexander M. Rush
113
1,670
0
26 Aug 2015
Statistical analysis of the Indus script using $n$-grams
Statistical analysis of the Indus script using nnn-grams
N. Yadav
H. Joglekar
Rajesh P. N. Rao
M. Vahia
I. Mahadevan
Ronojoy Adhikari
70
46
0
20 Jan 2009
1