ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2003.01629
  4. Cited By
Can Increasing Input Dimensionality Improve Deep Reinforcement Learning?

Can Increasing Input Dimensionality Improve Deep Reinforcement Learning?

3 March 2020
Keita Ota
Tomoaki Oiki
Devesh K. Jha
T. Mariyama
D. Nikovski
    OffRL
ArXivPDFHTML

Papers citing "Can Increasing Input Dimensionality Improve Deep Reinforcement Learning?"

5 / 5 papers shown
Title
Hyperspherical Normalization for Scalable Deep Reinforcement Learning
Hyperspherical Normalization for Scalable Deep Reinforcement Learning
Hojoon Lee
Youngdo Lee
Takuma Seno
Donghu Kim
Peter Stone
Jaegul Choo
63
1
0
24 Feb 2025
Cross-Domain Policy Adaptation by Capturing Representation Mismatch
Cross-Domain Policy Adaptation by Capturing Representation Mismatch
Jiafei Lyu
Chenjia Bai
Jingwen Yang
Zongqing Lu
Xiu Li
30
8
0
24 May 2024
Bridging State and History Representations: Understanding
  Self-Predictive RL
Bridging State and History Representations: Understanding Self-Predictive RL
Tianwei Ni
Benjamin Eysenbach
Erfan Seyedsalehi
Michel Ma
Clement Gehring
Aditya Mahajan
Pierre-Luc Bacon
AI4TS
AI4CE
22
20
0
17 Jan 2024
A Survey on Transformers in Reinforcement Learning
A Survey on Transformers in Reinforcement Learning
Wenzhe Li
Hao Luo
Zichuan Lin
Chongjie Zhang
Zongqing Lu
Deheng Ye
OffRL
MU
AI4CE
37
55
0
08 Jan 2023
Training Larger Networks for Deep Reinforcement Learning
Training Larger Networks for Deep Reinforcement Learning
Keita Ota
Devesh K. Jha
Asako Kanezaki
OffRL
23
39
0
16 Feb 2021
1