ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2003.01094
  4. Cited By
On the Global Convergence of Training Deep Linear ResNets

On the Global Convergence of Training Deep Linear ResNets

2 March 2020
Difan Zou
Philip M. Long
Quanquan Gu
ArXiv (abs)PDFHTML

Papers citing "On the Global Convergence of Training Deep Linear ResNets"

13 / 13 papers shown
Title
Width Provably Matters in Optimization for Deep Linear Neural Networks
Width Provably Matters in Optimization for Deep Linear Neural Networks
S. Du
Wei Hu
79
95
0
24 Jan 2019
On Lazy Training in Differentiable Programming
On Lazy Training in Differentiable Programming
Lénaïc Chizat
Edouard Oyallon
Francis R. Bach
111
840
0
19 Dec 2018
Stochastic Gradient Descent Optimizes Over-parameterized Deep ReLU
  Networks
Stochastic Gradient Descent Optimizes Over-parameterized Deep ReLU Networks
Difan Zou
Yuan Cao
Dongruo Zhou
Quanquan Gu
ODL
215
448
0
21 Nov 2018
Gradient Descent Provably Optimizes Over-parameterized Neural Networks
Gradient Descent Provably Optimizes Over-parameterized Neural Networks
S. Du
Xiyu Zhai
Barnabás Póczós
Aarti Singh
MLTODL
245
1,276
0
04 Oct 2018
Exponential Convergence Time of Gradient Descent for One-Dimensional
  Deep Linear Neural Networks
Exponential Convergence Time of Gradient Descent for One-Dimensional Deep Linear Neural Networks
Ohad Shamir
89
47
0
23 Sep 2018
Learning Overparameterized Neural Networks via Stochastic Gradient
  Descent on Structured Data
Learning Overparameterized Neural Networks via Stochastic Gradient Descent on Structured Data
Yuanzhi Li
Yingyu Liang
MLT
222
653
0
03 Aug 2018
Implicit Bias of Gradient Descent on Linear Convolutional Networks
Implicit Bias of Gradient Descent on Linear Convolutional Networks
Suriya Gunasekar
Jason D. Lee
Daniel Soudry
Nathan Srebro
MDE
130
414
0
01 Jun 2018
On the Optimization of Deep Networks: Implicit Acceleration by
  Overparameterization
On the Optimization of Deep Networks: Implicit Acceleration by Overparameterization
Sanjeev Arora
Nadav Cohen
Elad Hazan
120
487
0
19 Feb 2018
SGD Learns Over-parameterized Networks that Provably Generalize on
  Linearly Separable Data
SGD Learns Over-parameterized Networks that Provably Generalize on Linearly Separable Data
Alon Brutzkus
Amir Globerson
Eran Malach
Shai Shalev-Shwartz
MLT
156
279
0
27 Oct 2017
Recovery Guarantees for One-hidden-layer Neural Networks
Recovery Guarantees for One-hidden-layer Neural Networks
Kai Zhong
Zhao Song
Prateek Jain
Peter L. Bartlett
Inderjit S. Dhillon
MLT
183
337
0
10 Jun 2017
Depth Creates No Bad Local Minima
Depth Creates No Bad Local Minima
Haihao Lu
Kenji Kawaguchi
ODLFAtt
78
121
0
27 Feb 2017
Identity Matters in Deep Learning
Identity Matters in Deep Learning
Moritz Hardt
Tengyu Ma
OOD
99
399
0
14 Nov 2016
Topology and Geometry of Half-Rectified Network Optimization
Topology and Geometry of Half-Rectified Network Optimization
C. Freeman
Joan Bruna
233
235
0
04 Nov 2016
1