ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2003.01041
  4. Cited By
Constrained Nonnegative Matrix Factorization for Blind Hyperspectral
  Unmixing incorporating Endmember Independence
v1v2v3v4v5 (latest)

Constrained Nonnegative Matrix Factorization for Blind Hyperspectral Unmixing incorporating Endmember Independence

2 March 2020
E. Ekanayake
H. Weerasooriya
D. Ranasinghe
S. Herath
B. Rathnayake
G. Godaliyadda
M. P. B. Ekanayake
Hmspb Herath
ArXiv (abs)PDFHTML

Papers citing "Constrained Nonnegative Matrix Factorization for Blind Hyperspectral Unmixing incorporating Endmember Independence"

3 / 3 papers shown
Title
GAUSS: Guided Encoder-Decoder Architecture for Hyperspectral Unmixing
  with Spatial Smoothness
GAUSS: Guided Encoder-Decoder Architecture for Hyperspectral Unmixing with Spatial Smoothness
Y. Ranasinghe
Kavinga Weerasooriya
Roshan Godaliyadda
Vijitha Herath
Parakrama Ekanayake
Dhananjaya Jayasundara
Lakshitha Ramanayake
Neranjan Senarath
Dulantha Wickramasinghe
56
5
0
16 Apr 2022
Deep Deterministic Independent Component Analysis for Hyperspectral
  Unmixing
Deep Deterministic Independent Component Analysis for Hyperspectral Unmixing
Hongming Li
Shujian Yu
José C. Príncipe
49
6
0
07 Feb 2022
Convolutional Autoencoder for Blind Hyperspectral Image Unmixing
Convolutional Autoencoder for Blind Hyperspectral Image Unmixing
Y. Ranasinghe
S. Herath
Kavinga Weerasooriya
Mevan Ekanayake
Roshan Godaliyadda
Parakrama Ekanayake
Vijitha Herath
18
16
0
18 Nov 2020
1