ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2003.00617
  4. Cited By
Approximate Cross-validation: Guarantees for Model Assessment and
  Selection

Approximate Cross-validation: Guarantees for Model Assessment and Selection

2 March 2020
Ashia Wilson
Maximilian Kasy
Lester W. Mackey
ArXivPDFHTML

Papers citing "Approximate Cross-validation: Guarantees for Model Assessment and Selection"

6 / 6 papers shown
Title
A Higher-Order Swiss Army Infinitesimal Jackknife
A Higher-Order Swiss Army Infinitesimal Jackknife
Ryan Giordano
Michael I. Jordan
Tamara Broderick
UQCV
18
29
0
28 Jul 2019
Approximate Cross-Validation in High Dimensions with Guarantees
Approximate Cross-Validation in High Dimensions with Guarantees
William T. Stephenson
Tamara Broderick
27
2
0
31 May 2019
Approximate Leave-One-Out for Fast Parameter Tuning in High Dimensions
Approximate Leave-One-Out for Fast Parameter Tuning in High Dimensions
Shuaiwen Wang
Wenda Zhou
Haihao Lu
A. Maleki
Vahab Mirrokni
48
34
0
07 Jul 2018
On Optimal Generalizability in Parametric Learning
On Optimal Generalizability in Parametric Learning
Ahmad Beirami
Meisam Razaviyayn
Shahin Shahrampour
Vahid Tarokh
32
52
0
14 Nov 2017
Linear Convergence of Gradient and Proximal-Gradient Methods Under the
  Polyak-Łojasiewicz Condition
Linear Convergence of Gradient and Proximal-Gradient Methods Under the Polyak-Łojasiewicz Condition
Hamed Karimi
J. Nutini
Mark Schmidt
217
1,208
0
16 Aug 2016
Proximal Newton-type methods for minimizing composite functions
Proximal Newton-type methods for minimizing composite functions
Jason D. Lee
Yuekai Sun
M. Saunders
65
305
0
07 Jun 2012
1