ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2002.11543
  4. Cited By
Towards new cross-validation-based estimators for Gaussian process
  regression: efficient adjoint computation of gradients

Towards new cross-validation-based estimators for Gaussian process regression: efficient adjoint computation of gradients

26 February 2020
S. Petit
Julien Bect
Sébastien Da Veiga
Paul Feliot
E. Vázquez
ArXivPDFHTML

Papers citing "Towards new cross-validation-based estimators for Gaussian process regression: efficient adjoint computation of gradients"

1 / 1 papers shown
Title
Cross Validation and Maximum Likelihood estimations of hyper-parameters
  of Gaussian processes with model misspecification
Cross Validation and Maximum Likelihood estimations of hyper-parameters of Gaussian processes with model misspecification
François Bachoc
62
227
0
18 Jan 2013
1