Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2002.11021
Cited By
v1
v2 (latest)
SNIFF: Reverse Engineering of Neural Networks with Fault Attacks
23 February 2020
J. Breier
Dirmanto Jap
Xiaolu Hou
S. Bhasin
Yang Liu
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"SNIFF: Reverse Engineering of Neural Networks with Fault Attacks"
28 / 28 papers shown
Title
Targeted Attack against Deep Neural Networks via Flipping Limited Weight Bits
Jiawang Bai
Baoyuan Wu
Yong Zhang
Yiming Li
Zhifeng Li
Shutao Xia
AAML
82
75
0
21 Feb 2021
DeepHammer: Depleting the Intelligence of Deep Neural Networks through Targeted Chain of Bit Flips
Fan Yao
Adnan Siraj Rakin
Deliang Fan
AAML
83
161
0
30 Mar 2020
V0LTpwn: Attacking x86 Processor Integrity from Software
Zijo Kenjar
Tommaso Frassetto
David Gens
Michael Franz
A. Sadeghi
52
90
0
10 Dec 2019
PyTorch: An Imperative Style, High-Performance Deep Learning Library
Adam Paszke
Sam Gross
Francisco Massa
Adam Lerer
James Bradbury
...
Sasank Chilamkurthy
Benoit Steiner
Lu Fang
Junjie Bai
Soumith Chintala
ODL
538
42,591
0
03 Dec 2019
TBT: Targeted Neural Network Attack with Bit Trojan
Adnan Siraj Rakin
Zhezhi He
Deliang Fan
AAML
59
215
0
10 Sep 2019
High Accuracy and High Fidelity Extraction of Neural Networks
Matthew Jagielski
Nicholas Carlini
David Berthelot
Alexey Kurakin
Nicolas Papernot
MLAU
MIACV
81
380
0
03 Sep 2019
SCNIFFER: Low-Cost, Automated, Efficient Electromagnetic Side-Channel Sniffing
Josef Danial
Debayan Das
Santosh K. Ghosh
A. Raychowdhury
Shreyas Sen
21
32
0
25 Aug 2019
Terminal Brain Damage: Exposing the Graceless Degradation in Deep Neural Networks Under Hardware Fault Attacks
Sanghyun Hong
Pietro Frigo
Yigitcan Kaya
Cristiano Giuffrida
Tudor Dumitras
AAML
53
213
0
03 Jun 2019
Bit-Flip Attack: Crushing Neural Network with Progressive Bit Search
Adnan Siraj Rakin
Zhezhi He
Deliang Fan
AAML
69
224
0
28 Mar 2019
A Simple Explanation for the Existence of Adversarial Examples with Small Hamming Distance
A. Shamir
Itay Safran
Eyal Ronen
O. Dunkelman
GAN
AAML
37
95
0
30 Jan 2019
Model Reconstruction from Model Explanations
S. Milli
Ludwig Schmidt
Anca Dragan
Moritz Hardt
FAtt
61
178
0
13 Jul 2018
Stealing Hyperparameters in Machine Learning
Binghui Wang
Neil Zhenqiang Gong
AAML
147
466
0
14 Feb 2018
Learning Transferable Architectures for Scalable Image Recognition
Barret Zoph
Vijay Vasudevan
Jonathon Shlens
Quoc V. Le
186
5,607
0
21 Jul 2017
Multiple Fault Attack on PRESENT with a Hardware Trojan Implementation in FPGA
J. Breier
W. He
24
23
0
27 Feb 2017
Aggregated Residual Transformations for Deep Neural Networks
Saining Xie
Ross B. Girshick
Piotr Dollár
Zhuowen Tu
Kaiming He
522
10,347
0
16 Nov 2016
Membership Inference Attacks against Machine Learning Models
Reza Shokri
M. Stronati
Congzheng Song
Vitaly Shmatikov
SLR
MIALM
MIACV
272
4,159
0
18 Oct 2016
Xception: Deep Learning with Depthwise Separable Convolutions
François Chollet
MDE
BDL
PINN
1.4K
14,608
0
07 Oct 2016
Stealing Machine Learning Models via Prediction APIs
Florian Tramèr
Fan Zhang
Ari Juels
Michael K. Reiter
Thomas Ristenpart
SILM
MLAU
109
1,810
0
09 Sep 2016
Densely Connected Convolutional Networks
Gao Huang
Zhuang Liu
Laurens van der Maaten
Kilian Q. Weinberger
PINN
3DV
786
36,881
0
25 Aug 2016
Wide Residual Networks
Sergey Zagoruyko
N. Komodakis
351
8,000
0
23 May 2016
Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning
Christian Szegedy
Sergey Ioffe
Vincent Vanhoucke
Alexander A. Alemi
381
14,263
0
23 Feb 2016
Deep Residual Learning for Image Recognition
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
MedIm
2.2K
194,426
0
10 Dec 2015
Rethinking the Inception Architecture for Computer Vision
Christian Szegedy
Vincent Vanhoucke
Sergey Ioffe
Jonathon Shlens
Z. Wojna
3DV
BDL
886
27,416
0
02 Dec 2015
Resiliency of Deep Neural Networks under Quantization
Wonyong Sung
Sungho Shin
Kyuyeon Hwang
MQ
60
158
0
20 Nov 2015
Explaining and Harnessing Adversarial Examples
Ian Goodfellow
Jonathon Shlens
Christian Szegedy
AAML
GAN
282
19,121
0
20 Dec 2014
Qualitatively characterizing neural network optimization problems
Ian Goodfellow
Oriol Vinyals
Andrew M. Saxe
ODL
112
523
0
19 Dec 2014
Going Deeper with Convolutions
Christian Szegedy
Wei Liu
Yangqing Jia
P. Sermanet
Scott E. Reed
Dragomir Anguelov
D. Erhan
Vincent Vanhoucke
Andrew Rabinovich
485
43,694
0
17 Sep 2014
Very Deep Convolutional Networks for Large-Scale Image Recognition
Karen Simonyan
Andrew Zisserman
FAtt
MDE
1.7K
100,508
0
04 Sep 2014
1