Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2002.11018
Cited By
Breaking Batch Normalization for better explainability of Deep Neural Networks through Layer-wise Relevance Propagation
24 February 2020
M. Guillemot
C. Heusele
R. Korichi
S. Schnebert
Liming Chen
FAtt
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Breaking Batch Normalization for better explainability of Deep Neural Networks through Layer-wise Relevance Propagation"
4 / 4 papers shown
Title
Explainable Artificial Intelligence: Understanding, Visualizing and Interpreting Deep Learning Models
Wojciech Samek
Thomas Wiegand
K. Müller
XAI
VLM
53
1,186
0
28 Aug 2017
Learning Important Features Through Propagating Activation Differences
Avanti Shrikumar
Peyton Greenside
A. Kundaje
FAtt
121
3,848
0
10 Apr 2017
WaveNet: A Generative Model for Raw Audio
Aaron van den Oord
Sander Dieleman
Heiga Zen
Karen Simonyan
Oriol Vinyals
Alex Graves
Nal Kalchbrenner
A. Senior
Koray Kavukcuoglu
DiffM
280
7,361
0
12 Sep 2016
The Mythos of Model Interpretability
Zachary Chase Lipton
FaML
118
3,672
0
10 Jun 2016
1