Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2002.10410
Cited By
Lagrangian Decomposition for Neural Network Verification
24 February 2020
Rudy Bunel
Alessandro De Palma
Alban Desmaison
Krishnamurthy Dvijotham
Pushmeet Kohli
Philip H. S. Torr
M. P. Kumar
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Lagrangian Decomposition for Neural Network Verification"
19 / 19 papers shown
Title
BaB-ND: Long-Horizon Motion Planning with Branch-and-Bound and Neural Dynamics
Keyi Shen
Jiangwei Yu
Huan Zhang
Yunzhu Li
Yunzhu Li
87
1
0
12 Dec 2024
On Using Certified Training towards Empirical Robustness
Alessandro De Palma
Serge Durand
Zakaria Chihani
François Terrier
Caterina Urban
OOD
AAML
38
1
0
02 Oct 2024
Probabilistic Verification of Neural Networks using Branch and Bound
David Boetius
Stefan Leue
Tobias Sutter
42
0
0
27 May 2024
Robustness Analysis of Continuous-Depth Models with Lagrangian Techniques
Sophie A. Neubauer
Radu Grosu
20
0
0
23 Aug 2023
When Deep Learning Meets Polyhedral Theory: A Survey
Joey Huchette
Gonzalo Muñoz
Thiago Serra
Calvin Tsay
AI4CE
94
32
0
29 Apr 2023
First Three Years of the International Verification of Neural Networks Competition (VNN-COMP)
Christopher Brix
Mark Niklas Muller
Stanley Bak
Taylor T. Johnson
Changliu Liu
NAI
30
66
0
14 Jan 2023
ReachLipBnB: A branch-and-bound method for reachability analysis of neural autonomous systems using Lipschitz bounds
Taha Entesari
Sina Sharifi
Mahyar Fazlyab
39
6
0
01 Nov 2022
Sound and Complete Verification of Polynomial Networks
Elias Abad Rocamora
Mehmet Fatih Şahin
Fanghui Liu
Grigorios G. Chrysos
V. Cevher
23
5
0
15 Sep 2022
IBP Regularization for Verified Adversarial Robustness via Branch-and-Bound
Alessandro De Palma
Rudy Bunel
Krishnamurthy Dvijotham
M. P. Kumar
Robert Stanforth
AAML
42
17
0
29 Jun 2022
Efficient Neural Network Analysis with Sum-of-Infeasibilities
Haoze Wu
Aleksandar Zeljić
Guy Katz
Clark W. Barrett
AAML
47
30
0
19 Mar 2022
The Second International Verification of Neural Networks Competition (VNN-COMP 2021): Summary and Results
Stanley Bak
Changliu Liu
Taylor T. Johnson
NAI
19
112
0
31 Aug 2021
Neural Network Branch-and-Bound for Neural Network Verification
Florian Jaeckle
Jingyue Lu
M. P. Kumar
18
8
0
27 Jul 2021
GoTube: Scalable Stochastic Verification of Continuous-Depth Models
Sophie Gruenbacher
Mathias Lechner
Ramin Hasani
Daniela Rus
T. Henzinger
S. Smolka
Radu Grosu
23
17
0
18 Jul 2021
DeepSplit: Scalable Verification of Deep Neural Networks via Operator Splitting
Shaoru Chen
Eric Wong
Zico Kolter
Mahyar Fazlyab
47
15
0
16 Jun 2021
An efficient nonconvex reformulation of stagewise convex optimization problems
Rudy Bunel
Oliver Hinder
Srinadh Bhojanapalli
Krishnamurthy Dvijotham
Dvijotham
OffRL
27
14
0
27 Oct 2020
SoK: Certified Robustness for Deep Neural Networks
Linyi Li
Tao Xie
Bo-wen Li
AAML
27
128
0
09 Sep 2020
Algorithms for Verifying Deep Neural Networks
Changliu Liu
Tomer Arnon
Christopher Lazarus
Christopher A. Strong
Clark W. Barrett
Mykel J. Kochenderfer
AAML
30
390
0
15 Mar 2019
Output Reachable Set Estimation and Verification for Multi-Layer Neural Networks
Weiming Xiang
Hoang-Dung Tran
Taylor T. Johnson
88
292
0
09 Aug 2017
Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks
Guy Katz
Clark W. Barrett
D. Dill
Kyle D. Julian
Mykel Kochenderfer
AAML
231
1,837
0
03 Feb 2017
1