Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2002.10384
Cited By
v1
v2 (latest)
On the Sample Complexity of Adversarial Multi-Source PAC Learning
24 February 2020
Nikola Konstantinov
Elias Frantar
Dan Alistarh
Christoph H. Lampert
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"On the Sample Complexity of Adversarial Multi-Source PAC Learning"
22 / 22 papers shown
Title
Incentivizing Honesty among Competitors in Collaborative Learning and Optimization
Florian E. Dorner
Nikola Konstantinov
Georgi Pashaliev
Martin Vechev
FedML
94
7
0
25 May 2023
A General Method for Robust Learning from Batches
Ayush Jain
A. Orlitsky
OOD
36
16
0
25 Feb 2020
Efficiently Learning Structured Distributions from Untrusted Batches
Sitan Chen
Jingkai Li
Ankur Moitra
OOD
FedML
61
16
0
05 Nov 2019
Certified Adversarial Robustness via Randomized Smoothing
Jeremy M. Cohen
Elan Rosenfeld
J. Zico Kolter
AAML
166
2,051
0
08 Feb 2019
Robust Learning from Untrusted Sources
Nikola Konstantinov
Christoph H. Lampert
FedML
OOD
63
72
0
29 Jan 2019
Analyzing Federated Learning through an Adversarial Lens
A. Bhagoji
Supriyo Chakraborty
Prateek Mittal
S. Calo
FedML
303
1,059
0
29 Nov 2018
Universal Multi-Party Poisoning Attacks
Saeed Mahloujifar
Mohammad Mahmoody
Ameer Mohammed
AAML
57
46
0
10 Sep 2018
Mitigating Sybils in Federated Learning Poisoning
Clement Fung
Chris J. M. Yoon
Ivan Beschastnikh
AAML
58
507
0
14 Aug 2018
A Simple Unified Framework for Detecting Out-of-Distribution Samples and Adversarial Attacks
Kimin Lee
Kibok Lee
Honglak Lee
Jinwoo Shin
OODD
192
2,063
0
10 Jul 2018
Defending Against Saddle Point Attack in Byzantine-Robust Distributed Learning
Dong Yin
Yudong Chen
Kannan Ramchandran
Peter L. Bartlett
FedML
83
100
0
14 Jun 2018
Do Outliers Ruin Collaboration?
Mingda Qiao
44
15
0
12 May 2018
Byzantine Stochastic Gradient Descent
Dan Alistarh
Zeyuan Allen-Zhu
Jingkai Li
FedML
73
297
0
23 Mar 2018
Byzantine-Robust Distributed Learning: Towards Optimal Statistical Rates
Dong Yin
Yudong Chen
Kannan Ramchandran
Peter L. Bartlett
OOD
FedML
127
1,517
0
05 Mar 2018
Certified Defenses against Adversarial Examples
Aditi Raghunathan
Jacob Steinhardt
Percy Liang
AAML
115
969
0
29 Jan 2018
Learning Discrete Distributions from Untrusted Batches
Mingda Qiao
Gregory Valiant
FedML
66
34
0
22 Nov 2017
Enhancing The Reliability of Out-of-distribution Image Detection in Neural Networks
Shiyu Liang
Yixuan Li
R. Srikant
UQCV
OODD
171
2,082
0
08 Jun 2017
On Fundamental Limits of Robust Learning
Jiashi Feng
24
2
0
30 Mar 2017
Efficient PAC Learning from the Crowd
Pranjal Awasthi
Avrim Blum
Nika Haghtalab
Yishay Mansour
FedML
44
20
0
21 Mar 2017
A Baseline for Detecting Misclassified and Out-of-Distribution Examples in Neural Networks
Dan Hendrycks
Kevin Gimpel
UQCV
171
3,480
0
07 Oct 2016
Robust Estimators in High Dimensions without the Computational Intractability
Ilias Diakonikolas
Gautam Kamath
D. Kane
Jingkai Li
Ankur Moitra
Alistair Stewart
73
513
0
21 Apr 2016
Distributed Robust Learning
Jiashi Feng
Huan Xu
Shie Mannor
OOD
90
53
0
21 Sep 2014
New Analysis and Algorithm for Learning with Drifting Distributions
M. Mohri
Andrés Munoz Medina
148
125
0
19 May 2012
1