Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2002.10319
Cited By
Self-Adaptive Training: beyond Empirical Risk Minimization
24 February 2020
Lang Huang
Chaoning Zhang
Hongyang R. Zhang
NoLa
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Self-Adaptive Training: beyond Empirical Risk Minimization"
39 / 39 papers shown
Title
Interpretable and Fair Mechanisms for Abstaining Classifiers
Daphne Lenders
Andrea Pugnana
Roberto Pellungrini
Toon Calders
D. Pedreschi
F. Giannotti
FaML
91
1
0
24 Mar 2025
Sample Selection via Contrastive Fragmentation for Noisy Label Regression
C. Kim
Sangwoo Moon
Jihwan Moon
Dongyeon Woo
Gunhee Kim
NoLa
57
0
0
25 Feb 2025
Democratic Training Against Universal Adversarial Perturbations
Bing-Jie Sun
Jun Sun
Wei Zhao
AAML
66
0
0
08 Feb 2025
Calibrating Bayesian Learning via Regularization, Confidence Minimization, and Selective Inference
Jiayi Huang
Sangwoo Park
Osvaldo Simeone
108
2
0
03 Jan 2025
A Causal Framework for Evaluating Deferring Systems
Filippo Palomba
Andrea Pugnana
Jose M. Alvarez
Salvatore Ruggieri
CML
51
1
0
29 May 2024
Learning with Noisy Labels: Interconnection of Two Expectation-Maximizations
Heewon Kim
Hyun Sung Chang
Kiho Cho
Jaeyun Lee
Bohyung Han
NoLa
26
2
0
09 Jan 2024
Learning to Abstain From Uninformative Data
Yikai Zhang
Songzhu Zheng
M. Dalirrooyfard
Pengxiang Wu
Anderson Schneider
Anant Raj
Yuriy Nevmyvaka
Chao Chen
26
2
0
25 Sep 2023
Omnipotent Adversarial Training in the Wild
Guanlin Li
Kangjie Chen
Yuan Xu
Han Qiu
Tianwei Zhang
26
0
0
14 Jul 2023
Group-based Robustness: A General Framework for Customized Robustness in the Real World
Weiran Lin
Keane Lucas
Neo Eyal
Lujo Bauer
Michael K. Reiter
Mahmood Sharif
OOD
AAML
27
1
0
29 Jun 2023
How Deep Learning Sees the World: A Survey on Adversarial Attacks & Defenses
Joana Cabral Costa
Tiago Roxo
Hugo Manuel Proença
Pedro R. M. Inácio
AAML
40
50
0
18 May 2023
CAT:Collaborative Adversarial Training
Xingbin Liu
Huafeng Kuang
Xianming Lin
Yongjian Wu
Rongrong Ji
AAML
22
4
0
27 Mar 2023
Gumbel-Softmax Selective Networks
Mahmoud Salem
Mohamed Osama Ahmed
Frederick Tung
Gabriel L. Oliveira
11
1
0
19 Nov 2022
AUC-based Selective Classification
Andrea Pugnana
Salvatore Ruggieri
23
9
0
19 Oct 2022
Robust Models are less Over-Confident
Julia Grabinski
Paul Gavrikov
J. Keuper
M. Keuper
AAML
36
24
0
12 Oct 2022
CrowdChecked: Detecting Previously Fact-Checked Claims in Social Media
Momchil Hardalov
Anton Chernyavskiy
Ivan Koychev
Dmitry Ilvovsky
Preslav Nakov
HAI
35
15
0
10 Oct 2022
Enhancing Diffusion-Based Image Synthesis with Robust Classifier Guidance
Bahjat Kawar
Roy Ganz
Michael Elad
DiffM
26
38
0
18 Aug 2022
Towards Harnessing Feature Embedding for Robust Learning with Noisy Labels
Chuang Zhang
Li Shen
Jian Yang
Chen Gong
NoLa
27
5
0
27 Jun 2022
Wavelet Regularization Benefits Adversarial Training
Jun Yan
Huilin Yin
Xiaoyang Deng
Zi-qin Zhao
Wancheng Ge
Hao Zhang
Gerhard Rigoll
AAML
19
2
0
08 Jun 2022
Selective Classification Via Neural Network Training Dynamics
Stephan Rabanser
Anvith Thudi
Kimia Hamidieh
Adam Dziedzic
Nicolas Papernot
29
21
0
26 May 2022
CE-based white-box adversarial attacks will not work using super-fitting
Youhuan Yang
Lei Sun
Leyu Dai
Song Guo
Xiuqing Mao
Xiaoqin Wang
Bayi Xu
AAML
34
0
0
04 May 2022
FedRN: Exploiting k-Reliable Neighbors Towards Robust Federated Learning
Sangmook Kim
Wonyoung Shin
Soohyuk Jang
Hwanjun Song
Se-Young Yun
34
2
0
03 May 2022
Adversarial Robustness through the Lens of Convolutional Filters
Paul Gavrikov
J. Keuper
38
15
0
05 Apr 2022
CNN Filter DB: An Empirical Investigation of Trained Convolutional Filters
Paul Gavrikov
J. Keuper
AAML
24
31
0
29 Mar 2022
Better Supervisory Signals by Observing Learning Paths
Yi Ren
Shangmin Guo
Danica J. Sutherland
33
21
0
04 Mar 2022
Robust Training under Label Noise by Over-parameterization
Sheng Liu
Zhihui Zhu
Qing Qu
Chong You
NoLa
OOD
27
106
0
28 Feb 2022
A Unified Wasserstein Distributional Robustness Framework for Adversarial Training
Tu Bui
Trung Le
Quan Hung Tran
He Zhao
Dinh Q. Phung
AAML
OOD
31
42
0
27 Feb 2022
On the Impact of Hard Adversarial Instances on Overfitting in Adversarial Training
Chen Liu
Zhichao Huang
Mathieu Salzmann
Tong Zhang
Sabine Süsstrunk
AAML
23
13
0
14 Dec 2021
Data Augmentation Can Improve Robustness
Sylvestre-Alvise Rebuffi
Sven Gowal
D. A. Calian
Florian Stimberg
Olivia Wiles
Timothy A. Mann
AAML
17
270
0
09 Nov 2021
Improved Regularization and Robustness for Fine-tuning in Neural Networks
Dongyue Li
Hongyang R. Zhang
NoLa
55
54
0
08 Nov 2021
Meta-Learning the Search Distribution of Black-Box Random Search Based Adversarial Attacks
Maksym Yatsura
J. H. Metzen
Matthias Hein
OOD
26
14
0
02 Nov 2021
Unsupervised Representation Learning Meets Pseudo-Label Supervised Self-Distillation: A New Approach to Rare Disease Classification
Jinghan Sun
Dong Wei
Kai Ma
Liansheng Wang
Yefeng Zheng
27
8
0
09 Oct 2021
Adversarial Robustness via Fisher-Rao Regularization
Marine Picot
Francisco Messina
Malik Boudiaf
Fabrice Labeau
Ismail Ben Ayed
Pablo Piantanida
AAML
25
23
0
12 Jun 2021
Exploring Misclassifications of Robust Neural Networks to Enhance Adversarial Attacks
Leo Schwinn
René Raab
A. Nguyen
Dario Zanca
Bjoern M. Eskofier
AAML
14
58
0
21 May 2021
LAFEAT: Piercing Through Adversarial Defenses with Latent Features
Yunrui Yu
Xitong Gao
Chengzhong Xu
AAML
FedML
33
44
0
19 Apr 2021
Fixing Data Augmentation to Improve Adversarial Robustness
Sylvestre-Alvise Rebuffi
Sven Gowal
D. A. Calian
Florian Stimberg
Olivia Wiles
Timothy A. Mann
AAML
36
269
0
02 Mar 2021
Understanding the Interaction of Adversarial Training with Noisy Labels
Jianing Zhu
Jingfeng Zhang
Bo Han
Tongliang Liu
Gang Niu
Hongxia Yang
Mohan Kankanhalli
Masashi Sugiyama
AAML
27
27
0
06 Feb 2021
Multi-Label Noise Robust Collaborative Learning for Remote Sensing Image Classification
A. Aksoy
Mahdyar Ravanbakhsh
Begüm Demir
35
24
0
19 Dec 2020
RobustBench: a standardized adversarial robustness benchmark
Francesco Croce
Maksym Andriushchenko
Vikash Sehwag
Edoardo Debenedetti
Nicolas Flammarion
M. Chiang
Prateek Mittal
Matthias Hein
VLM
234
678
0
19 Oct 2020
Uncovering the Limits of Adversarial Training against Norm-Bounded Adversarial Examples
Sven Gowal
Chongli Qin
J. Uesato
Timothy A. Mann
Pushmeet Kohli
AAML
17
323
0
07 Oct 2020
1