Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2002.10025
Cited By
Triple Wins: Boosting Accuracy, Robustness and Efficiency Together by Enabling Input-Adaptive Inference
24 February 2020
Ting-Kuei Hu
Tianlong Chen
Haotao Wang
Zhangyang Wang
OOD
AAML
3DH
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Triple Wins: Boosting Accuracy, Robustness and Efficiency Together by Enabling Input-Adaptive Inference"
24 / 24 papers shown
Title
Mixing Classifiers to Alleviate the Accuracy-Robustness Trade-Off
Yatong Bai
Brendon G. Anderson
Somayeh Sojoudi
AAML
37
2
0
26 Nov 2023
Training Image Derivatives: Increased Accuracy and Universal Robustness
V. Avrutskiy
51
0
0
21 Oct 2023
Aegis: Mitigating Targeted Bit-flip Attacks against Deep Neural Networks
Jialai Wang
Ziyuan Zhang
Meiqi Wang
Han Qiu
Tianwei Zhang
Qi Li
Zongpeng Li
Tao Wei
Chao Zhang
AAML
27
20
0
27 Feb 2023
Improving the Accuracy-Robustness Trade-Off of Classifiers via Adaptive Smoothing
Yatong Bai
Brendon G. Anderson
Aerin Kim
Somayeh Sojoudi
AAML
43
18
0
29 Jan 2023
Towards Inference Efficient Deep Ensemble Learning
Ziyue Li
Kan Ren
Yifan Yang
Xinyang Jiang
Yuqing Yang
Dongsheng Li
BDL
34
12
0
29 Jan 2023
Mind Your Heart: Stealthy Backdoor Attack on Dynamic Deep Neural Network in Edge Computing
Tian Dong
Ziyuan Zhang
Han Qiu
Tianwei Zhang
Hewu Li
T. Wang
AAML
33
6
0
22 Dec 2022
Vision Transformer Computation and Resilience for Dynamic Inference
Kavya Sreedhar
Jason Clemons
Rangharajan Venkatesan
S. Keckler
M. Horowitz
32
2
0
06 Dec 2022
Understanding the Robustness of Multi-Exit Models under Common Corruptions
Akshay Mehra
Skyler Seto
Navdeep Jaitly
B. Theobald
AAML
26
3
0
03 Dec 2022
Personalized Federated Learning with Multi-branch Architecture
Junki Mori
T. Yoshiyama
Ryo Furukawa
Isamu Teranishi
FedML
31
2
0
15 Nov 2022
Can pruning improve certified robustness of neural networks?
Zhangheng Li
Tianlong Chen
Linyi Li
Yue Liu
Zhangyang Wang
AAML
24
12
0
15 Jun 2022
A Closer Look at Branch Classifiers of Multi-exit Architectures
Shaohui Lin
Bo Ji
Rongrong Ji
Angela Yao
17
4
0
28 Apr 2022
OccamNets: Mitigating Dataset Bias by Favoring Simpler Hypotheses
Robik Shrestha
Kushal Kafle
Christopher Kanan
CML
38
13
0
05 Apr 2022
Sparsity Winning Twice: Better Robust Generalization from More Efficient Training
Tianlong Chen
Zhenyu Zhang
Pengju Wang
Santosh Balachandra
Haoyu Ma
Zehao Wang
Zhangyang Wang
OOD
AAML
100
47
0
20 Feb 2022
AugMax: Adversarial Composition of Random Augmentations for Robust Training
Haotao Wang
Chaowei Xiao
Jean Kossaifi
Zhiding Yu
Anima Anandkumar
Zhangyang Wang
35
107
0
26 Oct 2021
Multi-Exit Vision Transformer for Dynamic Inference
Arian Bakhtiarnia
Qi Zhang
Alexandros Iosifidis
38
26
0
29 Jun 2021
IA-RED
2
^2
2
: Interpretability-Aware Redundancy Reduction for Vision Transformers
Bowen Pan
Yikang Shen
Yi Ding
Zhangyang Wang
Rogerio Feris
A. Oliva
VLM
ViT
44
156
0
23 Jun 2021
Graceful Degradation and Related Fields
J. Dymond
36
4
0
21 Jun 2021
Taxonomy of Machine Learning Safety: A Survey and Primer
Sina Mohseni
Haotao Wang
Zhiding Yu
Chaowei Xiao
Zhangyang Wang
J. Yadawa
31
31
0
09 Jun 2021
Single-Layer Vision Transformers for More Accurate Early Exits with Less Overhead
Arian Bakhtiarnia
Qi Zhang
Alexandros Iosifidis
32
35
0
19 May 2021
Improving the Accuracy of Early Exits in Multi-Exit Architectures via Curriculum Learning
Arian Bakhtiarnia
Qi Zhang
Alexandros Iosifidis
38
12
0
21 Apr 2021
Robust Pre-Training by Adversarial Contrastive Learning
Ziyu Jiang
Tianlong Chen
Ting-Li Chen
Zhangyang Wang
30
228
0
26 Oct 2020
Adversarial Robustness: From Self-Supervised Pre-Training to Fine-Tuning
Tianlong Chen
Sijia Liu
Shiyu Chang
Yu Cheng
Lisa Amini
Zhangyang Wang
AAML
18
246
0
28 Mar 2020
AdderNet: Do We Really Need Multiplications in Deep Learning?
Hanting Chen
Yunhe Wang
Chunjing Xu
Boxin Shi
Chao Xu
Qi Tian
Chang Xu
29
194
0
31 Dec 2019
Adversarial Machine Learning at Scale
Alexey Kurakin
Ian Goodfellow
Samy Bengio
AAML
314
3,115
0
04 Nov 2016
1