ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2002.09843
  4. Cited By
An Accuracy-Lossless Perturbation Method for Defending Privacy Attacks
  in Federated Learning

An Accuracy-Lossless Perturbation Method for Defending Privacy Attacks in Federated Learning

23 February 2020
Xue Yang
Yan Feng
Weijun Fang
Jun Shao
Xiaohu Tang
Shutao Xia
Rongxing Lu
    FedML
    AAML
ArXivPDFHTML

Papers citing "An Accuracy-Lossless Perturbation Method for Defending Privacy Attacks in Federated Learning"

7 / 7 papers shown
Title
Gradients Stand-in for Defending Deep Leakage in Federated Learning
Gradients Stand-in for Defending Deep Leakage in Federated Learning
H. Yi
H. Ren
C. Hu
Y. Li
J. Deng
Xin Xie
FedML
35
0
0
11 Oct 2024
A Survey on Vulnerability of Federated Learning: A Learning Algorithm
  Perspective
A Survey on Vulnerability of Federated Learning: A Learning Algorithm Perspective
Xianghua Xie
Chen Hu
Hanchi Ren
Jingjing Deng
FedML
AAML
47
19
0
27 Nov 2023
A Survey of What to Share in Federated Learning: Perspectives on Model
  Utility, Privacy Leakage, and Communication Efficiency
A Survey of What to Share in Federated Learning: Perspectives on Model Utility, Privacy Leakage, and Communication Efficiency
Jiawei Shao
Zijian Li
Wenqiang Sun
Tailin Zhou
Yuchang Sun
Lumin Liu
Zehong Lin
Yuyi Mao
Jun Zhang
FedML
43
23
0
20 Jul 2023
Gradient Leakage Defense with Key-Lock Module for Federated Learning
Gradient Leakage Defense with Key-Lock Module for Federated Learning
Hanchi Ren
Jingjing Deng
Xianghua Xie
Xiaoke Ma
Jianfeng Ma
FedML
37
2
0
06 May 2023
Vertical Federated Knowledge Transfer via Representation Distillation
  for Healthcare Collaboration Networks
Vertical Federated Knowledge Transfer via Representation Distillation for Healthcare Collaboration Networks
Chung-ju Huang
Leye Wang
Xiao Han
FedML
32
24
0
11 Feb 2023
Does Federated Learning Really Need Backpropagation?
Does Federated Learning Really Need Backpropagation?
H. Feng
Tianyu Pang
Chao Du
Wei Chen
Shuicheng Yan
Min-Bin Lin
FedML
36
10
0
28 Jan 2023
Over-the-Air Federated Learning with Privacy Protection via Correlated
  Additive Perturbations
Over-the-Air Federated Learning with Privacy Protection via Correlated Additive Perturbations
Jialing Liao
Zheng Chen
Erik G. Larsson
25
12
0
05 Oct 2022
1