ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2002.09779
  4. Cited By
Stochasticity in Neural ODEs: An Empirical Study

Stochasticity in Neural ODEs: An Empirical Study

22 February 2020
V. Oganesyan
Alexandra Volokhova
Dmitry Vetrov
    BDL
ArXivPDFHTML

Papers citing "Stochasticity in Neural ODEs: An Empirical Study"

10 / 10 papers shown
Title
Understanding and Mitigating Membership Inference Risks of Neural Ordinary Differential Equations
Understanding and Mitigating Membership Inference Risks of Neural Ordinary Differential Equations
Sanghyun Hong
Fan Wu
A. Gruber
Kookjin Lee
42
0
0
12 Jan 2025
Balanced Neural ODEs: nonlinear model order reduction and Koopman operator approximations
Balanced Neural ODEs: nonlinear model order reduction and Koopman operator approximations
Julius Aka
Johannes Brunnemann
Jörg Eiden
Arne Speerforck
Lars Mikelsons
31
0
0
14 Oct 2024
Sparsity in Continuous-Depth Neural Networks
Sparsity in Continuous-Depth Neural Networks
H. Aliee
Till Richter
Mikhail Solonin
I. Ibarra
Fabian J. Theis
Niki Kilbertus
29
10
0
26 Oct 2022
E2V-SDE: From Asynchronous Events to Fast and Continuous Video Reconstruction via Neural Stochastic Differential Equations
Jongwan Kim
Dongjin Lee
Byunggook Na
Seongsik Park
Jeonghee Jo
Sung-Hoon Yoon
29
0
0
15 Jun 2022
TO-FLOW: Efficient Continuous Normalizing Flows with Temporal
  Optimization adjoint with Moving Speed
TO-FLOW: Efficient Continuous Normalizing Flows with Temporal Optimization adjoint with Moving Speed
Shian Du
Yihong Luo
Wei-Neng Chen
Jian Xu
Delu Zeng
24
7
0
19 Mar 2022
Constructing Neural Network-Based Models for Simulating Dynamical
  Systems
Constructing Neural Network-Based Models for Simulating Dynamical Systems
Christian Møldrup Legaard
Thomas Schranz
G. Schweiger
Ján Drgovna
Basak Falay
C. Gomes
Alexandros Iosifidis
M. Abkar
P. Larsen
PINN
AI4CE
28
93
0
02 Nov 2021
Beyond Predictions in Neural ODEs: Identification and Interventions
Beyond Predictions in Neural ODEs: Identification and Interventions
H. Aliee
Fabian J. Theis
Niki Kilbertus
CML
40
24
0
23 Jun 2021
Infinitely Deep Bayesian Neural Networks with Stochastic Differential
  Equations
Infinitely Deep Bayesian Neural Networks with Stochastic Differential Equations
Winnie Xu
Ricky T. Q. Chen
Xuechen Li
D. Duvenaud
BDL
UQCV
24
46
0
12 Feb 2021
STEER: Simple Temporal Regularization For Neural ODEs
STEER: Simple Temporal Regularization For Neural ODEs
Arna Ghosh
Harkirat Singh Behl
Emilien Dupont
Philip H. S. Torr
Vinay P. Namboodiri
BDL
AI4TS
24
74
0
18 Jun 2020
Neural Controlled Differential Equations for Irregular Time Series
Neural Controlled Differential Equations for Irregular Time Series
Patrick Kidger
James Morrill
James Foster
Terry Lyons
AI4TS
25
449
0
18 May 2020
1