ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2002.09405
  4. Cited By
Learning to Simulate Complex Physics with Graph Networks

Learning to Simulate Complex Physics with Graph Networks

21 February 2020
Alvaro Sanchez-Gonzalez
Jonathan Godwin
Tobias Pfaff
Rex Ying
J. Leskovec
Peter W. Battaglia
    PINN
    AI4CE
ArXivPDFHTML

Papers citing "Learning to Simulate Complex Physics with Graph Networks"

46 / 46 papers shown
Title
DrivAer Transformer: A high-precision and fast prediction method for vehicle aerodynamic drag coefficient based on the DrivAerNet++ dataset
DrivAer Transformer: A high-precision and fast prediction method for vehicle aerodynamic drag coefficient based on the DrivAerNet++ dataset
Jiaqi He
Xiangwen Luo
Yiping Wang
AI4CE
81
0
0
11 Apr 2025
Advances in 4D Generation: A Survey
Advances in 4D Generation: A Survey
Qiaowei Miao
Kehan Li
Jinsheng Quan
Zhiyuan Min
Shaojie Ma
Yichao Xu
Yi Yang
Yawei Luo
98
1
0
18 Mar 2025
Sampling-based Distributed Training with Message Passing Neural Network
Sampling-based Distributed Training with Message Passing Neural Network
P. Kakka
Sheel Nidhan
Rishikesh Ranade
Jay Pathak
J. MacArt
GNN
93
3
0
20 Feb 2025
Learning to Decouple Complex Systems
Learning to Decouple Complex Systems
Zihan Zhou
Tianshu Yu
BDL
88
4
0
17 Feb 2025
DoMINO: A Decomposable Multi-scale Iterative Neural Operator for Modeling Large Scale Engineering Simulations
DoMINO: A Decomposable Multi-scale Iterative Neural Operator for Modeling Large Scale Engineering Simulations
Rishikesh Ranade
M. A. Nabian
Kaustubh Tangsali
Alexey Kamenev
O. Hennigh
Ram Cherukuri
S. Choudhry
AI4CE
109
2
0
23 Jan 2025
NeuralDEM -- Real-time Simulation of Industrial Particulate Flows
NeuralDEM -- Real-time Simulation of Industrial Particulate Flows
Benedikt Alkin
Tobias Kronlachner
Samuele Papa
Stefan Pirker
Thomas Lichtenegger
Johannes Brandstetter
PINN
AI4CE
68
1
1
14 Nov 2024
Metamizer: a versatile neural optimizer for fast and accurate physics simulations
Metamizer: a versatile neural optimizer for fast and accurate physics simulations
Nils Wandel
Stefan Schulz
Reinhard Klein
PINN
AI4CE
60
1
0
10 Oct 2024
PhyMPGN: Physics-encoded Message Passing Graph Network for spatiotemporal PDE systems
PhyMPGN: Physics-encoded Message Passing Graph Network for spatiotemporal PDE systems
Bocheng Zeng
Qi Wang
Ming Yan
Yang Liu
Ruizhi Chengze
Yi Zhang
Hongsheng Liu
Zidong Wang
Hao Sun
AI4CE
66
3
0
02 Oct 2024
Video-Driven Graph Network-Based Simulators
Video-Driven Graph Network-Based Simulators
Franciszek Szewczyk
Gilles Louppe
M. Sabatelli
PINN
56
0
0
10 Sep 2024
Meta Flow Matching: Integrating Vector Fields on the Wasserstein Manifold
Meta Flow Matching: Integrating Vector Fields on the Wasserstein Manifold
Lazar Atanackovic
Xi Zhang
Brandon Amos
Mathieu Blanchette
Leo J. Lee
Yoshua Bengio
Alexander Tong
Kirill Neklyudov
76
11
0
26 Aug 2024
Compositional Physical Reasoning of Objects and Events from Videos
Compositional Physical Reasoning of Objects and Events from Videos
Zhenfang Chen
Shilong Dong
Kexin Yi
Yunzhu Li
Mingyu Ding
Antonio Torralba
Joshua B. Tenenbaum
Chuang Gan
OCL
71
1
0
02 Aug 2024
Reduced-Order Neural Operators: Learning Lagrangian Dynamics on Highly Sparse Graphs
Reduced-Order Neural Operators: Learning Lagrangian Dynamics on Highly Sparse Graphs
Hrishikesh Viswanath
Yue Chang
Julius Berner
Julius Berner
Peter Yichen Chen
Aniket Bera
AI4CE
74
2
0
04 Jul 2024
DrivAerNet: A Parametric Car Dataset for Data-Driven Aerodynamic Design and Prediction
DrivAerNet: A Parametric Car Dataset for Data-Driven Aerodynamic Design and Prediction
Mohamed Elrefaie
Angela Dai
Faez Ahmed
DiffM
AI4CE
63
9
0
12 Mar 2024
A Survey of Geometric Graph Neural Networks: Data Structures, Models and Applications
A Survey of Geometric Graph Neural Networks: Data Structures, Models and Applications
Jiaqi Han
Jiacheng Cen
Liming Wu
Zongzhao Li
Xiangzhe Kong
...
Zhewei Wei
Deli Zhao
Yu Rong
Wenbing Huang
Wenbing Huang
AI4CE
64
23
0
01 Mar 2024
Universal Physics Transformers: A Framework For Efficiently Scaling Neural Operators
Universal Physics Transformers: A Framework For Efficiently Scaling Neural Operators
Benedikt Alkin
Andreas Fürst
Simon Schmid
Lukas Gruber
Markus Holzleitner
Johannes Brandstetter
PINN
AI4CE
80
11
0
19 Feb 2024
Manifold GCN: Diffusion-based Convolutional Neural Network for Manifold-valued Graphs
Manifold GCN: Diffusion-based Convolutional Neural Network for Manifold-valued Graphs
M. Hanik
Gabriele Steidl
C. V. Tycowicz
GNN
MedIm
54
3
0
25 Jan 2024
Adaptive Message Passing: A General Framework to Mitigate Oversmoothing, Oversquashing, and Underreaching
Adaptive Message Passing: A General Framework to Mitigate Oversmoothing, Oversquashing, and Underreaching
Federico Errica
Henrik Christiansen
Viktor Zaverkin
Takashi Maruyama
Mathias Niepert
Francesco Alesiani
76
10
0
27 Dec 2023
Monte Carlo Neural PDE Solver for Learning PDEs via Probabilistic Representation
Monte Carlo Neural PDE Solver for Learning PDEs via Probabilistic Representation
Rui Zhang
Qi Meng
Rongchan Zhu
Yue Wang
Wenlei Shi
Shihua Zhang
Zhi-Ming Ma
Tie-Yan Liu
DiffM
AI4CE
70
5
0
10 Feb 2023
Pointer Graph Networks
Pointer Graph Networks
Petar Velivcković
Lars Buesing
Matthew Overlan
Razvan Pascanu
Oriol Vinyals
Charles Blundell
GNN
36
62
0
11 Jun 2020
Benchmarking Graph Neural Networks
Benchmarking Graph Neural Networks
Vijay Prakash Dwivedi
Chaitanya K. Joshi
Anh Tuan Luu
T. Laurent
Yoshua Bengio
Xavier Bresson
226
929
0
02 Mar 2020
Learning to Control PDEs with Differentiable Physics
Learning to Control PDEs with Differentiable Physics
Philipp Holl
V. Koltun
Nils Thuerey
AI4CE
PINN
56
187
0
21 Jan 2020
JAX, M.D.: A Framework for Differentiable Physics
JAX, M.D.: A Framework for Differentiable Physics
S. Schoenholz
E. D. Cubuk
21
37
0
09 Dec 2019
Neural Execution of Graph Algorithms
Neural Execution of Graph Algorithms
Petar Velickovic
Rex Ying
Matilde Padovano
R. Hadsell
Charles Blundell
GNN
53
166
0
23 Oct 2019
DiffTaichi: Differentiable Programming for Physical Simulation
DiffTaichi: Differentiable Programming for Physical Simulation
Yuanming Hu
Luke Anderson
Tzu-Mao Li
Qi Sun
N. Carr
Jonathan Ragan-Kelley
F. Durand
27
377
0
01 Oct 2019
Hamiltonian Graph Networks with ODE Integrators
Hamiltonian Graph Networks with ODE Integrators
Alvaro Sanchez-Gonzalez
V. Bapst
Kyle Cranmer
Peter W. Battaglia
AI4CE
55
177
0
27 Sep 2019
Scale MLPerf-0.6 models on Google TPU-v3 Pods
Scale MLPerf-0.6 models on Google TPU-v3 Pods
Sameer Kumar
Victor Bitorff
Dehao Chen
Chi-Heng Chou
Blake A. Hechtman
...
Peter Mattson
Shibo Wang
Tao Wang
Yuanzhong Xu
Zongwei Zhou
22
39
0
21 Sep 2019
Stochastic Prediction of Multi-Agent Interactions from Partial
  Observations
Stochastic Prediction of Multi-Agent Interactions from Partial Observations
Chen Sun
Per Karlsson
Jiajun Wu
J. Tenenbaum
Kevin Patrick Murphy
58
89
0
25 Feb 2019
Learning to Predict the Cosmological Structure Formation
Learning to Predict the Cosmological Structure Formation
Siyu He
Yin Li
Yu Feng
S. Ho
Siamak Ravanbakhsh
Wei Chen
Barnabás Póczós
44
168
0
15 Nov 2018
Learning To Simulate
Learning To Simulate
Nataniel Ruiz
S. Schulter
Manmohan Chandraker
68
119
0
05 Oct 2018
Learning Particle Dynamics for Manipulating Rigid Bodies, Deformable
  Objects, and Fluids
Learning Particle Dynamics for Manipulating Rigid Bodies, Deformable Objects, and Fluids
Yunzhu Li
Jiajun Wu
Russ Tedrake
J. Tenenbaum
Antonio Torralba
PINN
AI4CE
51
391
0
03 Oct 2018
Propagation Networks for Model-Based Control Under Partial Observation
Propagation Networks for Model-Based Control Under Partial Observation
Yunzhu Li
Jiajun Wu
Jun-Yan Zhu
J. Tenenbaum
Antonio Torralba
Russ Tedrake
AI4CE
22
137
0
28 Sep 2018
Relational Forward Models for Multi-Agent Learning
Relational Forward Models for Multi-Agent Learning
Andrea Tacchetti
H. F. Song
P. Mediano
V. Zambaldi
Neil C. Rabinowitz
T. Graepel
M. Botvinick
Peter W. Battaglia
AI4CE
34
77
0
28 Sep 2018
Flexible Neural Representation for Physics Prediction
Flexible Neural Representation for Physics Prediction
Damian Mrowca
Chengxu Zhuang
E. Wang
Nick Haber
Li Fei-Fei
J. Tenenbaum
Daniel L. K. Yamins
OCL
AI4CE
34
248
0
21 Jun 2018
Relational inductive biases, deep learning, and graph networks
Relational inductive biases, deep learning, and graph networks
Peter W. Battaglia
Jessica B. Hamrick
V. Bapst
Alvaro Sanchez-Gonzalez
V. Zambaldi
...
Pushmeet Kohli
M. Botvinick
Oriol Vinyals
Yujia Li
Razvan Pascanu
AI4CE
NAI
229
3,101
0
04 Jun 2018
Graph networks as learnable physics engines for inference and control
Graph networks as learnable physics engines for inference and control
Alvaro Sanchez-Gonzalez
N. Heess
Jost Tobias Springenberg
J. Merel
Martin Riedmiller
R. Hadsell
Peter W. Battaglia
GNN
AI4CE
PINN
OCL
93
597
0
04 Jun 2018
Latent-space Physics: Towards Learning the Temporal Evolution of Fluid
  Flow
Latent-space Physics: Towards Learning the Temporal Evolution of Fluid Flow
S. Wiewel
M. Becher
N. Thürey
AI4CE
58
274
0
27 Feb 2018
Spatial Temporal Graph Convolutional Networks for Skeleton-Based Action
  Recognition
Spatial Temporal Graph Convolutional Networks for Skeleton-Based Action Recognition
Sijie Yan
Yuanjun Xiong
Dahua Lin
GNN
170
4,124
0
23 Jan 2018
Know-Evolve: Deep Temporal Reasoning for Dynamic Knowledge Graphs
Know-Evolve: Deep Temporal Reasoning for Dynamic Knowledge Graphs
Rakshit S. Trivedi
H. Dai
Yichen Wang
Le Song
BDL
44
475
0
16 May 2017
Dynamic Graph Convolutional Networks
Dynamic Graph Convolutional Networks
Franco Manessi
A. Rozza
M. Manzo
GNN
45
368
0
20 Apr 2017
Neural Message Passing for Quantum Chemistry
Neural Message Passing for Quantum Chemistry
Justin Gilmer
S. Schoenholz
Patrick F. Riley
Oriol Vinyals
George E. Dahl
201
7,388
0
04 Apr 2017
A Compositional Object-Based Approach to Learning Physical Dynamics
A Compositional Object-Based Approach to Learning Physical Dynamics
Michael Chang
T. Ullman
Antonio Torralba
J. Tenenbaum
AI4CE
OCL
287
439
0
01 Dec 2016
Interaction Networks for Learning about Objects, Relations and Physics
Interaction Networks for Learning about Objects, Relations and Physics
Peter W. Battaglia
Razvan Pascanu
Matthew Lai
Danilo Jimenez Rezende
Koray Kavukcuoglu
AI4CE
OCL
PINN
GNN
396
1,405
0
01 Dec 2016
Semi-Supervised Classification with Graph Convolutional Networks
Semi-Supervised Classification with Graph Convolutional Networks
Thomas Kipf
Max Welling
GNN
SSL
310
28,795
0
09 Sep 2016
Layer Normalization
Layer Normalization
Jimmy Lei Ba
J. Kiros
Geoffrey E. Hinton
165
10,412
0
21 Jul 2016
Adam: A Method for Stochastic Optimization
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
262
149,474
0
22 Dec 2014
Sinkhorn Distances: Lightspeed Computation of Optimal Transportation
  Distances
Sinkhorn Distances: Lightspeed Computation of Optimal Transportation Distances
Marco Cuturi
OT
68
4,210
0
04 Jun 2013
1