Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2002.09339
Cited By
Generalisation error in learning with random features and the hidden manifold model
21 February 2020
Federica Gerace
Bruno Loureiro
Florent Krzakala
M. Mézard
Lenka Zdeborová
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Generalisation error in learning with random features and the hidden manifold model"
40 / 40 papers shown
Title
The Effect of Optimal Self-Distillation in Noisy Gaussian Mixture Model
Kaito Takanami
Takashi Takahashi
Ayaka Sakata
65
1
0
27 Jan 2025
Bilinear Sequence Regression: A Model for Learning from Long Sequences of High-dimensional Tokens
Vittorio Erba
Emanuele Troiani
Luca Biggio
Antoine Maillard
Lenka Zdeborová
91
1
0
24 Oct 2024
Asymptotic theory of in-context learning by linear attention
Yue M. Lu
Mary I. Letey
Jacob A. Zavatone-Veth
Anindita Maiti
Cengiz Pehlevan
50
12
0
20 May 2024
Restoring balance: principled under/oversampling of data for optimal classification
Emanuele Loffredo
Mauro Pastore
Simona Cocco
R. Monasson
50
9
0
15 May 2024
The Gaussian equivalence of generative models for learning with shallow neural networks
Sebastian Goldt
Bruno Loureiro
Galen Reeves
Florent Krzakala
M. Mézard
Lenka Zdeborová
BDL
50
101
0
25 Jun 2020
Random Matrix Theory Proves that Deep Learning Representations of GAN-data Behave as Gaussian Mixtures
M. Seddik
Cosme Louart
M. Tamaazousti
Romain Couillet
29
67
0
21 Jan 2020
Deep Double Descent: Where Bigger Models and More Data Hurt
Preetum Nakkiran
Gal Kaplun
Yamini Bansal
Tristan Yang
Boaz Barak
Ilya Sutskever
77
925
0
04 Dec 2019
Kernel computations from large-scale random features obtained by Optical Processing Units
Ruben Ohana
Jonas Wacker
Jonathan Dong
Sébastien Marmin
Florent Krzakala
Maurizio Filippone
L. Daudet
24
24
0
22 Oct 2019
Modelling the influence of data structure on learning in neural networks: the hidden manifold model
Sebastian Goldt
M. Mézard
Florent Krzakala
Lenka Zdeborová
BDL
46
51
0
25 Sep 2019
The generalization error of random features regression: Precise asymptotics and double descent curve
Song Mei
Andrea Montanari
66
631
0
14 Aug 2019
Disentangling feature and lazy training in deep neural networks
Mario Geiger
S. Spigler
Arthur Jacot
Matthieu Wyart
73
17
0
19 Jun 2019
Kernel and Rich Regimes in Overparametrized Models
Blake E. Woodworth
Suriya Gunasekar
Pedro H. P. Savarese
E. Moroshko
Itay Golan
Jason D. Lee
Daniel Soudry
Nathan Srebro
46
358
0
13 Jun 2019
Surprises in High-Dimensional Ridgeless Least Squares Interpolation
Trevor Hastie
Andrea Montanari
Saharon Rosset
Robert Tibshirani
83
737
0
19 Mar 2019
Scaling description of generalization with number of parameters in deep learning
Mario Geiger
Arthur Jacot
S. Spigler
Franck Gabriel
Levent Sagun
Stéphane dÁscoli
Giulio Biroli
Clément Hongler
Matthieu Wyart
57
195
0
06 Jan 2019
Reconciling modern machine learning practice and the bias-variance trade-off
M. Belkin
Daniel J. Hsu
Siyuan Ma
Soumik Mandal
140
1,628
0
28 Dec 2018
On Lazy Training in Differentiable Programming
Lénaïc Chizat
Edouard Oyallon
Francis R. Bach
72
823
0
19 Dec 2018
A Convergence Theory for Deep Learning via Over-Parameterization
Zeyuan Allen-Zhu
Yuanzhi Li
Zhao Song
AI4CE
ODL
130
1,457
0
09 Nov 2018
A jamming transition from under- to over-parametrization affects loss landscape and generalization
S. Spigler
Mario Geiger
Stéphane dÁscoli
Levent Sagun
Giulio Biroli
Matthieu Wyart
42
152
0
22 Oct 2018
A Modern Take on the Bias-Variance Tradeoff in Neural Networks
Brady Neal
Sarthak Mittal
A. Baratin
Vinayak Tantia
Matthew Scicluna
Simon Lacoste-Julien
Ioannis Mitliagkas
60
169
0
19 Oct 2018
Gradient Descent Provably Optimizes Over-parameterized Neural Networks
S. Du
Xiyu Zhai
Barnabás Póczós
Aarti Singh
MLT
ODL
108
1,261
0
04 Oct 2018
Neural Tangent Kernel: Convergence and Generalization in Neural Networks
Arthur Jacot
Franck Gabriel
Clément Hongler
121
3,160
0
20 Jun 2018
The committee machine: Computational to statistical gaps in learning a two-layers neural network
Benjamin Aubin
Antoine Maillard
Jean Barbier
Florent Krzakala
N. Macris
Lenka Zdeborová
53
105
0
14 Jun 2018
The phase transition for the existence of the maximum likelihood estimate in high-dimensional logistic regression
Emmanuel J. Candes
Pragya Sur
29
140
0
25 Apr 2018
High-dimensional dynamics of generalization error in neural networks
Madhu S. Advani
Andrew M. Saxe
AI4CE
106
467
0
10 Oct 2017
Optimal Errors and Phase Transitions in High-Dimensional Generalized Linear Models
Jean Barbier
Florent Krzakala
N. Macris
Léo Miolane
Lenka Zdeborová
55
262
0
10 Aug 2017
Exploring Generalization in Deep Learning
Behnam Neyshabur
Srinadh Bhojanapalli
David A. McAllester
Nathan Srebro
FAtt
121
1,245
0
27 Jun 2017
FALKON: An Optimal Large Scale Kernel Method
Alessandro Rudi
Luigi Carratino
Lorenzo Rosasco
30
196
0
31 May 2017
The Unreasonable Effectiveness of Structured Random Orthogonal Embeddings
K. Choromanski
Mark Rowland
Adrian Weller
57
85
0
02 Mar 2017
A Random Matrix Approach to Neural Networks
Cosme Louart
Zhenyu Liao
Romain Couillet
30
161
0
17 Feb 2017
Understanding deep learning requires rethinking generalization
Chiyuan Zhang
Samy Bengio
Moritz Hardt
Benjamin Recht
Oriol Vinyals
HAI
215
4,612
0
10 Nov 2016
Structured adaptive and random spinners for fast machine learning computations
Mariusz Bojarski
A. Choromańska
K. Choromanski
Francois Fagan
Cédric Gouy-Pailler
Anne Morvan
Nourhan Sakr
Tamás Sarlós
Jamal Atif
42
35
0
19 Oct 2016
ACDC: A Structured Efficient Linear Layer
Marcin Moczulski
Misha Denil
J. Appleyard
Nando de Freitas
52
98
0
18 Nov 2015
Statistical physics of inference: Thresholds and algorithms
Lenka Zdeborová
Florent Krzakala
AI4CE
36
422
0
08 Nov 2015
Random Projections through multiple optical scattering: Approximating kernels at the speed of light
Alaa Saade
F. Caltagirone
I. Carron
L. Daudet
Angélique Dremeau
S. Gigan
Florent Krzakala
24
117
0
22 Oct 2015
The Spectral Norm of Random Inner-Product Kernel Matrices
Z. Fan
Andrea Montanari
53
47
0
19 Jul 2015
Fastfood: Approximate Kernel Expansions in Loglinear Time
Quoc V. Le
Tamás Sarlós
Alex Smola
42
442
0
13 Aug 2014
Auto-Encoding Variational Bayes
Diederik P. Kingma
Max Welling
BDL
300
16,972
0
20 Dec 2013
Divide and Conquer Kernel Ridge Regression: A Distributed Algorithm with Minimax Optimal Rates
Yuchen Zhang
John C. Duchi
Martin J. Wainwright
79
376
0
22 May 2013
Statistical mechanics of complex neural systems and high dimensional data
Madhu S. Advani
Subhaneil Lahiri
Surya Ganguli
AI4CE
50
70
0
30 Jan 2013
A typical reconstruction limit of compressed sensing based on Lp-norm minimization
Y. Kabashima
Tadashi Wadayama
Toshiyuki Tanaka
59
159
0
06 Jul 2009
1