Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2002.09309
Cited By
Efficiently Sampling Functions from Gaussian Process Posteriors
21 February 2020
James T. Wilson
Viacheslav Borovitskiy
Alexander Terenin
P. Mostowsky
M. Deisenroth
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Efficiently Sampling Functions from Gaussian Process Posteriors"
23 / 23 papers shown
Title
Computation-Aware Kalman Filtering and Smoothing
Marvin Pfortner
Jonathan Wenger
Jon Cockayne
Philipp Hennig
91
4
0
13 Mar 2025
Residual Deep Gaussian Processes on Manifolds
Kacper Wyrwal
Andreas Krause
Viacheslav Borovitskiy
BDL
73
0
0
31 Oct 2024
Optimizing Posterior Samples for Bayesian Optimization via Rootfinding
Taiwo A. Adebiyi
Bach Do
Ruda Zhang
152
2
0
29 Oct 2024
Improving Linear System Solvers for Hyperparameter Optimisation in Iterative Gaussian Processes
J. Lin
Shreyas Padhy
Bruno Mlodozeniec
Javier Antorán
José Miguel Hernández-Lobato
55
2
0
28 May 2024
Exact Gaussian Processes on a Million Data Points
Ke Alexander Wang
Geoff Pleiss
Jacob R. Gardner
Stephen Tyree
Kilian Q. Weinberger
A. Wilson
GP
43
227
0
19 Mar 2019
Gaussian Process Optimization with Adaptive Sketching: Scalable and No Regret
Daniele Calandriello
Luigi Carratino
A. Lazaric
Michal Valko
Lorenzo Rosasco
GP
31
68
0
13 Mar 2019
Rates of Convergence for Sparse Variational Gaussian Process Regression
David R. Burt
C. Rasmussen
Mark van der Wilk
47
152
0
08 Mar 2019
Orthogonally Decoupled Variational Gaussian Processes
Hugh Salimbeni
Ching-An Cheng
Byron Boots
M. Deisenroth
32
43
0
24 Sep 2018
Maximizing acquisition functions for Bayesian optimization
James T. Wilson
Frank Hutter
M. Deisenroth
115
245
0
25 May 2018
Constant-Time Predictive Distributions for Gaussian Processes
Geoff Pleiss
Jacob R. Gardner
Kilian Q. Weinberger
A. Wilson
39
94
0
16 Mar 2018
Computational Optimal Transport
Gabriel Peyré
Marco Cuturi
OT
136
2,133
0
01 Mar 2018
Variational Inference for Gaussian Process Models with Linear Complexity
Ching-An Cheng
Byron Boots
BDL
33
75
0
28 Nov 2017
Data-Efficient Reinforcement Learning with Probabilistic Model Predictive Control
Sanket Kamthe
M. Deisenroth
102
217
0
20 Jun 2017
Parallel and Distributed Thompson Sampling for Large-scale Accelerated Exploration of Chemical Space
José Miguel Hernández-Lobato
James Requeima
Edward O. Pyzer-Knapp
Alán Aspuru-Guzik
51
181
0
06 Jun 2017
Batched Large-scale Bayesian Optimization in High-dimensional Spaces
Zi Wang
Clement Gehring
Pushmeet Kohli
Stefanie Jegelka
UQCV
31
211
0
05 Jun 2017
Variational Fourier features for Gaussian processes
J. Hensman
N. Durrande
Arno Solin
VLM
48
200
0
21 Nov 2016
On the Error of Random Fourier Features
Danica J. Sutherland
J. Schneider
60
189
0
09 Jun 2015
Kernel Interpolation for Scalable Structured Gaussian Processes (KISS-GP)
A. Wilson
H. Nickisch
GP
59
512
0
03 Mar 2015
Gaussian Processes for Data-Efficient Learning in Robotics and Control
M. Deisenroth
Dieter Fox
C. Rasmussen
86
688
0
10 Feb 2015
Predictive Entropy Search for Efficient Global Optimization of Black-box Functions
José Miguel Hernández-Lobato
Matthew W. Hoffman
Zoubin Ghahramani
71
646
0
10 Jun 2014
Gaussian Processes for Big Data
J. Hensman
Nicolò Fusi
Neil D. Lawrence
GP
80
1,226
0
26 Sep 2013
Sinkhorn Distances: Lightspeed Computation of Optimal Transportation Distances
Marco Cuturi
OT
133
4,210
0
04 Jun 2013
Practical Bayesian Optimization of Machine Learning Algorithms
Jasper Snoek
Hugo Larochelle
Ryan P. Adams
280
7,883
0
13 Jun 2012
1