ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2002.08958
  4. Cited By
Uncertainty Principle for Communication Compression in Distributed and
  Federated Learning and the Search for an Optimal Compressor

Uncertainty Principle for Communication Compression in Distributed and Federated Learning and the Search for an Optimal Compressor

20 February 2020
M. Safaryan
Egor Shulgin
Peter Richtárik
ArXivPDFHTML

Papers citing "Uncertainty Principle for Communication Compression in Distributed and Federated Learning and the Search for an Optimal Compressor"

15 / 15 papers shown
Title
Correlated Quantization for Faster Nonconvex Distributed Optimization
Correlated Quantization for Faster Nonconvex Distributed Optimization
Andrei Panferov
Yury Demidovich
Ahmad Rammal
Peter Richtárik
MQ
44
4
0
10 Jan 2024
Matrix Compression via Randomized Low Rank and Low Precision
  Factorization
Matrix Compression via Randomized Low Rank and Low Precision Factorization
R. Saha
Varun Srivastava
Mert Pilanci
26
19
0
17 Oct 2023
Lower Bounds and Accelerated Algorithms in Distributed Stochastic Optimization with Communication Compression
Lower Bounds and Accelerated Algorithms in Distributed Stochastic Optimization with Communication Compression
Yutong He
Xinmeng Huang
Yiming Chen
W. Yin
Kun Yuan
31
7
0
12 May 2023
Breaking the Communication-Privacy-Accuracy Tradeoff with
  $f$-Differential Privacy
Breaking the Communication-Privacy-Accuracy Tradeoff with fff-Differential Privacy
Richeng Jin
Z. Su
C. Zhong
Zhaoyang Zhang
Tony Q.S. Quek
H. Dai
FedML
29
2
0
19 Feb 2023
DoCoFL: Downlink Compression for Cross-Device Federated Learning
DoCoFL: Downlink Compression for Cross-Device Federated Learning
Ron Dorfman
S. Vargaftik
Y. Ben-Itzhak
Kfir Y. Levy
FedML
32
19
0
01 Feb 2023
CEDAS: A Compressed Decentralized Stochastic Gradient Method with
  Improved Convergence
CEDAS: A Compressed Decentralized Stochastic Gradient Method with Improved Convergence
Kun-Yen Huang
Shin-Yi Pu
35
9
0
14 Jan 2023
Minimax Optimal Quantization of Linear Models: Information-Theoretic
  Limits and Efficient Algorithms
Minimax Optimal Quantization of Linear Models: Information-Theoretic Limits and Efficient Algorithms
R. Saha
Mert Pilanci
Andrea J. Goldsmith
MQ
24
3
0
23 Feb 2022
Wyner-Ziv Gradient Compression for Federated Learning
Wyner-Ziv Gradient Compression for Federated Learning
Kai Liang
Huiru Zhong
Haoning Chen
Youlong Wu
FedML
23
8
0
16 Nov 2021
Comfetch: Federated Learning of Large Networks on Constrained Clients
  via Sketching
Comfetch: Federated Learning of Large Networks on Constrained Clients via Sketching
Tahseen Rabbani
Brandon Yushan Feng
Marco Bornstein
Kyle Rui Sang
Yifan Yang
Arjun Rajkumar
A. Varshney
Furong Huang
FedML
59
2
0
17 Sep 2021
EDEN: Communication-Efficient and Robust Distributed Mean Estimation for
  Federated Learning
EDEN: Communication-Efficient and Robust Distributed Mean Estimation for Federated Learning
S. Vargaftik
Ran Ben-Basat
Amit Portnoy
Gal Mendelson
Y. Ben-Itzhak
Michael Mitzenmacher
FedML
46
45
0
19 Aug 2021
Rethinking gradient sparsification as total error minimization
Rethinking gradient sparsification as total error minimization
Atal Narayan Sahu
Aritra Dutta
A. Abdelmoniem
Trambak Banerjee
Marco Canini
Panos Kalnis
45
56
0
02 Aug 2021
Efficient Randomized Subspace Embeddings for Distributed Optimization
  under a Communication Budget
Efficient Randomized Subspace Embeddings for Distributed Optimization under a Communication Budget
R. Saha
Mert Pilanci
Andrea J. Goldsmith
31
5
0
13 Mar 2021
IntSGD: Adaptive Floatless Compression of Stochastic Gradients
IntSGD: Adaptive Floatless Compression of Stochastic Gradients
Konstantin Mishchenko
Bokun Wang
D. Kovalev
Peter Richtárik
75
14
0
16 Feb 2021
MARINA: Faster Non-Convex Distributed Learning with Compression
MARINA: Faster Non-Convex Distributed Learning with Compression
Eduard A. Gorbunov
Konstantin Burlachenko
Zhize Li
Peter Richtárik
39
109
0
15 Feb 2021
Breaking the Communication-Privacy-Accuracy Trilemma
Breaking the Communication-Privacy-Accuracy Trilemma
Wei-Ning Chen
Peter Kairouz
Ayfer Özgür
14
116
0
22 Jul 2020
1