ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2002.08688
  4. Cited By
An empirical study of Conv-TasNet

An empirical study of Conv-TasNet

20 February 2020
Berkan Kadıoğlu
Michael Horgan
Xiaoyu Liu
Jordi Pons
Dan Darcy
Vivek Kumar
ArXivPDFHTML

Papers citing "An empirical study of Conv-TasNet"

8 / 8 papers shown
Title
TIGER: Time-frequency Interleaved Gain Extraction and Reconstruction for Efficient Speech Separation
TIGER: Time-frequency Interleaved Gain Extraction and Reconstruction for Efficient Speech Separation
Mohan Xu
Kai Li
Guo Chen
Xiaolin Hu
51
0
0
02 Oct 2024
A 1.6-mW Sparse Deep Learning Accelerator for Speech Separation
A 1.6-mW Sparse Deep Learning Accelerator for Speech Separation
Chih-Chyau Yang
Tian-Sheuan Chang
31
0
0
15 Dec 2023
Multi-Scale Feature Fusion Transformer Network for End-to-End Single
  Channel Speech Separation
Multi-Scale Feature Fusion Transformer Network for End-to-End Single Channel Speech Separation
Yinhao Xu
Jian Zhou
L. Tao
H. Kwan
30
0
0
14 Dec 2022
Adversarial Permutation Invariant Training for Universal Sound
  Separation
Adversarial Permutation Invariant Training for Universal Sound Separation
Emilian Postolache
Jordi Pons
Santiago Pascual
Joan Serrà
VLM
28
6
0
21 Oct 2022
Directed Speech Separation for Automatic Speech Recognition of Long Form
  Conversational Speech
Directed Speech Separation for Automatic Speech Recognition of Long Form Conversational Speech
Rohit Paturi
S. Srinivasan
Katrin Kirchhoff
Daniel Garcia-Romero
17
9
0
10 Dec 2021
PERSA+: A Deep Learning Front-End for Context-Agnostic Audio
  Classification
PERSA+: A Deep Learning Front-End for Context-Agnostic Audio Classification
Lazaros Vrysis
Iordanis Thoidis
Charalampos A. Dimoulas
G. Papanikolaou
VLM
36
0
0
20 Jul 2021
Multichannel-based learning for audio object extraction
Multichannel-based learning for audio object extraction
Daniel Arteaga
Jordi Pons
DiffM
13
3
0
11 Feb 2021
Wave-U-Net: A Multi-Scale Neural Network for End-to-End Audio Source
  Separation
Wave-U-Net: A Multi-Scale Neural Network for End-to-End Audio Source Separation
Daniel Stoller
Sebastian Ewert
S. Dixon
AI4TS
104
589
0
08 Jun 2018
1