ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2002.08526
  4. Cited By
Scalable Constrained Bayesian Optimization

Scalable Constrained Bayesian Optimization

20 February 2020
David Eriksson
Matthias Poloczek
ArXivPDFHTML

Papers citing "Scalable Constrained Bayesian Optimization"

19 / 19 papers shown
Title
Covering Multiple Objectives with a Small Set of Solutions Using Bayesian Optimization
Covering Multiple Objectives with a Small Set of Solutions Using Bayesian Optimization
N. Maus
Kyurae Kim
Yimeng Zeng
Haydn Jones
Fangping Wan
Marcelo Der Torossian Torres
Cesar de la Fuente-Nunez
J. Gardner
80
0
0
31 Jan 2025
Scalable Bayesian Optimization via Focalized Sparse Gaussian Processes
Scalable Bayesian Optimization via Focalized Sparse Gaussian Processes
Yunyue Wei
Vincent Zhuang
Saraswati Soedarmadji
Yanan Sui
126
0
0
31 Dec 2024
Constrained Multi-objective Bayesian Optimization through Optimistic Constraints Estimation
Constrained Multi-objective Bayesian Optimization through Optimistic Constraints Estimation
Diantong Li
Fengxue Zhang
Chong Liu
Yuxin Chen
137
0
0
06 Nov 2024
Parallel Hyperparameter Optimization Of Spiking Neural Network
Parallel Hyperparameter Optimization Of Spiking Neural Network
Thomas Firmin
Pierre Boulet
El-Ghazali Talbi
30
3
0
01 Mar 2024
Practical Layout-Aware Analog/Mixed-Signal Design Automation with
  Bayesian Neural Networks
Practical Layout-Aware Analog/Mixed-Signal Design Automation with Bayesian Neural Networks
A. Budak
Keren Zhu
David Z. Pan
11
3
0
27 Nov 2023
Inverse Protein Folding Using Deep Bayesian Optimization
Inverse Protein Folding Using Deep Bayesian Optimization
N. Maus
Yimeng Zeng
Daniel A. Anderson
Phillip M. Maffettone
Aaron C. Solomon
Peyton Greenside
Osbert Bastani
Jacob R. Gardner
17
2
0
25 May 2023
Network Cascade Vulnerability using Constrained Bayesian Optimization
Network Cascade Vulnerability using Constrained Bayesian Optimization
Albert Y. S. Lam
M. Anitescu
A. Subramanyam
8
0
0
27 Apr 2023
OpenBox: A Python Toolkit for Generalized Black-box Optimization
OpenBox: A Python Toolkit for Generalized Black-box Optimization
Huaijun Jiang
Yu Shen
Yang Li
Beicheng Xu
Sixian Du
Wentao Zhang
Ce Zhang
Bin Cui
30
4
0
26 Apr 2023
Increasing the Scope as You Learn: Adaptive Bayesian Optimization in
  Nested Subspaces
Increasing the Scope as You Learn: Adaptive Bayesian Optimization in Nested Subspaces
Leonard Papenmeier
Luigi Nardi
Matthias Poloczek
14
36
0
22 Apr 2023
Scalable Bayesian optimization with high-dimensional outputs using
  randomized prior networks
Scalable Bayesian optimization with high-dimensional outputs using randomized prior networks
Mohamed Aziz Bhouri
M. Joly
Robert Yu
S. Sarkar
P. Perdikaris
BDL
UQCV
AI4CE
11
1
0
14 Feb 2023
Failure-averse Active Learning for Physics-constrained Systems
Failure-averse Active Learning for Physics-constrained Systems
Cheolhei Lee
Xing Wang
Jianguo Wu
Xiaowei Yue
AI4CE
19
7
0
27 Oct 2021
Multi-Objective Bayesian Optimization over High-Dimensional Search
  Spaces
Multi-Objective Bayesian Optimization over High-Dimensional Search Spaces
Sam Daulton
David Eriksson
Maximilian Balandat
E. Bakshy
20
105
0
22 Sep 2021
Bayesian Optimization with High-Dimensional Outputs
Bayesian Optimization with High-Dimensional Outputs
Wesley J. Maddox
Maximilian Balandat
A. Wilson
E. Bakshy
UQCV
13
49
0
24 Jun 2021
Bayesian Optimization is Superior to Random Search for Machine Learning
  Hyperparameter Tuning: Analysis of the Black-Box Optimization Challenge 2020
Bayesian Optimization is Superior to Random Search for Machine Learning Hyperparameter Tuning: Analysis of the Black-Box Optimization Challenge 2020
Ryan Turner
David Eriksson
M. McCourt
J. Kiili
Eero Laaksonen
Zhen Xu
Isabelle M Guyon
BDL
22
288
0
20 Apr 2021
Fast Design Space Exploration of Nonlinear Systems: Part I
Fast Design Space Exploration of Nonlinear Systems: Part I
S. Narain
Emily Mak
Dana Chee
Brendan Englot
K. Pochiraju
N. Jha
Karthik Narayan
22
5
0
05 Apr 2021
Sequential- and Parallel- Constrained Max-value Entropy Search via
  Information Lower Bound
Sequential- and Parallel- Constrained Max-value Entropy Search via Information Lower Bound
Shion Takeno
T. Tamura
Kazuki Shitara
Masayuki Karasuyama
31
17
0
19 Feb 2021
HEBO Pushing The Limits of Sample-Efficient Hyperparameter Optimisation
HEBO Pushing The Limits of Sample-Efficient Hyperparameter Optimisation
Alexander I. Cowen-Rivers
Wenlong Lyu
Rasul Tutunov
Zhi Wang
Antoine Grosnit
...
A. Maraval
Hao Jianye
Jun Wang
Jan Peters
H. Ammar
27
74
0
07 Dec 2020
Scalable Thompson Sampling using Sparse Gaussian Process Models
Scalable Thompson Sampling using Sparse Gaussian Process Models
Sattar Vakili
Henry B. Moss
A. Artemev
Vincent Dutordoir
Victor Picheny
8
34
0
09 Jun 2020
Re-Examining Linear Embeddings for High-Dimensional Bayesian
  Optimization
Re-Examining Linear Embeddings for High-Dimensional Bayesian Optimization
Benjamin Letham
Roberto Calandra
Akshara Rai
E. Bakshy
71
109
0
31 Jan 2020
1