ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2002.08276
  4. Cited By
Partial Optimal Transport with Applications on Positive-Unlabeled
  Learning

Partial Optimal Transport with Applications on Positive-Unlabeled Learning

19 February 2020
Laetitia Chapel
Mokhtar Z. Alaya
Gilles Gasso
    OT
ArXivPDFHTML

Papers citing "Partial Optimal Transport with Applications on Positive-Unlabeled Learning"

23 / 23 papers shown
Title
The Z-Gromov-Wasserstein Distance
The Z-Gromov-Wasserstein Distance
Martin Bauer
Facundo Mémoli
Tom Needham
Mao Nishino
OT
48
2
0
15 Aug 2024
Invariant Risk Minimization
Invariant Risk Minimization
Martín Arjovsky
Léon Bottou
Ishaan Gulrajani
David Lopez-Paz
OOD
144
2,190
0
05 Jul 2019
Sliced Gromov-Wasserstein
Sliced Gromov-Wasserstein
Titouan Vayer
Rémi Flamary
Romain Tavenard
Laetitia Chapel
Nicolas Courty
OT
25
100
0
24 May 2019
Scalable Gromov-Wasserstein Learning for Graph Partitioning and Matching
Scalable Gromov-Wasserstein Learning for Graph Partitioning and Matching
Hongteng Xu
Dixin Luo
Lawrence Carin
42
192
0
18 May 2019
Learning Generative Models across Incomparable Spaces
Learning Generative Models across Incomparable Spaces
Charlotte Bunne
David Alvarez-Melis
Andreas Krause
Stefanie Jegelka
GAN
41
112
0
14 May 2019
Gromov-Wasserstein Learning for Graph Matching and Node Embedding
Gromov-Wasserstein Learning for Graph Matching and Node Embedding
Hongteng Xu
Dixin Luo
H. Zha
Lawrence Carin
57
256
0
17 Jan 2019
Learning from positive and unlabeled data: a survey
Learning from positive and unlabeled data: a survey
Jessa Bekker
Jesse Davis
58
555
0
12 Nov 2018
Fused Gromov-Wasserstein distance for structured objects: theoretical
  foundations and mathematical properties
Fused Gromov-Wasserstein distance for structured objects: theoretical foundations and mathematical properties
David Tellez
G. Litjens
J. A. van der Laak
R. Tavenard
F. Ciompi
OT
69
125
0
07 Nov 2018
Scalable Unbalanced Optimal Transport using Generative Adversarial
  Networks
Scalable Unbalanced Optimal Transport using Generative Adversarial Networks
Karren D. Yang
Caroline Uhler
GAN
OT
39
75
0
26 Oct 2018
Classification from Positive, Unlabeled and Biased Negative Data
Classification from Positive, Unlabeled and Biased Negative Data
Yu-Guan Hsieh
Gang Niu
Masashi Sugiyama
30
79
0
01 Oct 2018
Gromov-Wasserstein Alignment of Word Embedding Spaces
Gromov-Wasserstein Alignment of Word Embedding Spaces
David Alvarez-Melis
Tommi Jaakkola
OT
46
326
0
31 Aug 2018
Learning from Positive and Unlabeled Data under the Selected At Random
  Assumption
Learning from Positive and Unlabeled Data under the Selected At Random Assumption
Jessa Bekker
Jesse Davis
OOD
21
15
0
27 Aug 2018
Computational Optimal Transport
Computational Optimal Transport
Gabriel Peyré
Marco Cuturi
OT
125
2,133
0
01 Mar 2018
Multilevel Clustering via Wasserstein Means
Multilevel Clustering via Wasserstein Means
Nhat Ho
X. Nguyen
Mikhail Yurochkin
Hung Bui
Viet Huynh
Dinh Q. Phung
26
145
0
13 Jun 2017
Class-prior Estimation for Learning from Positive and Unlabeled Data
Class-prior Estimation for Learning from Positive and Unlabeled Data
M. C. D. Plessis
Gang Niu
Masashi Sugiyama
40
159
0
05 Nov 2016
Convergence Rate of Frank-Wolfe for Non-Convex Objectives
Convergence Rate of Frank-Wolfe for Non-Convex Objectives
Simon Lacoste-Julien
51
194
0
01 Jul 2016
Mixture Proportion Estimation via Kernel Embedding of Distributions
Mixture Proportion Estimation via Kernel Embedding of Distributions
H. G. Ramaswamy
Clayton Scott
Ambuj Tewari
29
198
0
08 Mar 2016
On the Global Linear Convergence of Frank-Wolfe Optimization Variants
On the Global Linear Convergence of Frank-Wolfe Optimization Variants
Simon Lacoste-Julien
Martin Jaggi
52
410
0
18 Nov 2015
Optimal Transport for Domain Adaptation
Optimal Transport for Domain Adaptation
Nicolas Courty
Rémi Flamary
D. Tuia
A. Rakotomamonjy
OT
OOD
58
1,112
0
02 Jul 2015
Fast Optimal Transport Averaging of Neuroimaging Data
Fast Optimal Transport Averaging of Neuroimaging Data
Alexandre Gramfort
Gabriel Peyré
Marco Cuturi
OT
38
113
0
30 Mar 2015
DeCAF: A Deep Convolutional Activation Feature for Generic Visual
  Recognition
DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition
Jeff Donahue
Yangqing Jia
Oriol Vinyals
Judy Hoffman
Ning Zhang
Eric Tzeng
Trevor Darrell
VLM
ObjD
136
4,946
0
06 Oct 2013
Sinkhorn Distances: Lightspeed Computation of Optimal Transportation
  Distances
Sinkhorn Distances: Lightspeed Computation of Optimal Transportation Distances
Marco Cuturi
OT
121
4,210
0
04 Jun 2013
Subgraph Matching Kernels for Attributed Graphs
Subgraph Matching Kernels for Attributed Graphs
Nils Kriege
Petra Mutzel
36
276
0
27 Jun 2012
1