ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2002.08264
  4. Cited By
Molecule Attention Transformer

Molecule Attention Transformer

19 February 2020
Lukasz Maziarka
Tomasz Danel
Slawomir Mucha
Krzysztof Rataj
Jacek Tabor
Stanislaw Jastrzebski
ArXivPDFHTML

Papers citing "Molecule Attention Transformer"

28 / 78 papers shown
Title
Meta-learning Adaptive Deep Kernel Gaussian Processes for Molecular
  Property Prediction
Meta-learning Adaptive Deep Kernel Gaussian Processes for Molecular Property Prediction
Wenlin Chen
Austin Tripp
José Miguel Hernández-Lobato
14
23
0
05 May 2022
Graph Masked Autoencoders with Transformers
Graph Masked Autoencoders with Transformers
Sixiao Zhang
Hongxu Chen
Haoran Yang
Xiangguo Sun
Philip S. Yu
Guandong Xu
21
18
0
17 Feb 2022
XAI for Transformers: Better Explanations through Conservative
  Propagation
XAI for Transformers: Better Explanations through Conservative Propagation
Ameen Ali
Thomas Schnake
Oliver Eberle
G. Montavon
Klaus-Robert Muller
Lior Wolf
FAtt
15
89
0
15 Feb 2022
Efficient Softmax Approximation for Deep Neural Networks with Attention
  Mechanism
Efficient Softmax Approximation for Deep Neural Networks with Attention Mechanism
Ihor Vasyltsov
Wooseok Chang
25
12
0
21 Nov 2021
MassFormer: Tandem Mass Spectrum Prediction for Small Molecules using
  Graph Transformers
MassFormer: Tandem Mass Spectrum Prediction for Small Molecules using Graph Transformers
A. Young
Bo Wang
Hannes L. Röst
21
5
0
08 Nov 2021
Geometric Transformer for End-to-End Molecule Properties Prediction
Geometric Transformer for End-to-End Molecule Properties Prediction
Yoni Choukroun
Lior Wolf
AI4CE
ViT
25
16
0
26 Oct 2021
Permutation invariant graph-to-sequence model for template-free
  retrosynthesis and reaction prediction
Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction
Zhengkai Tu
Connor W. Coley
30
90
0
19 Oct 2021
Attentive Walk-Aggregating Graph Neural Networks
Attentive Walk-Aggregating Graph Neural Networks
M. F. Demirel
Shengchao Liu
Siddhant Garg
Zhenmei Shi
Yingyu Liang
87
9
0
06 Oct 2021
Molformer: Motif-based Transformer on 3D Heterogeneous Molecular Graphs
Molformer: Motif-based Transformer on 3D Heterogeneous Molecular Graphs
Fang Wu
Dragomir R. Radev
Huabin Xing
ViT
36
54
0
04 Oct 2021
GeomGCL: Geometric Graph Contrastive Learning for Molecular Property
  Prediction
GeomGCL: Geometric Graph Contrastive Learning for Molecular Property Prediction
Shuangli Li
Jingbo Zhou
Tong Xu
Dejing Dou
Hui Xiong
AI4CE
28
118
0
24 Sep 2021
Structure-aware Interactive Graph Neural Networks for the Prediction of
  Protein-Ligand Binding Affinity
Structure-aware Interactive Graph Neural Networks for the Prediction of Protein-Ligand Binding Affinity
Shuangli Li
Jingbo Zhou
Tong Xu
Liang Huang
Fan Wang
Haoyi Xiong
Weili Huang
Dejing Dou
Hui Xiong
MLAU
27
165
0
21 Jul 2021
Learning Attributed Graph Representations with Communicative Message
  Passing Transformer
Learning Attributed Graph Representations with Communicative Message Passing Transformer
Jianwen Chen
Shuangjia Zheng
Ying Song
Jiahua Rao
Yuedong Yang
22
46
0
19 Jul 2021
GeoT: A Geometry-aware Transformer for Reliable Molecular Property
  Prediction and Chemically Interpretable Representation Learning
GeoT: A Geometry-aware Transformer for Reliable Molecular Property Prediction and Chemically Interpretable Representation Learning
Bumju Kwak
J. Park
Taewon Kang
Jeonghee Jo
Byunghan Lee
Sungroh Yoon
AI4CE
23
6
0
29 Jun 2021
Dual-view Molecule Pre-training
Dual-view Molecule Pre-training
Jinhua Zhu
Yingce Xia
Tao Qin
Wen-gang Zhou
Houqiang Li
Tie-Yan Liu
AI4CE
27
51
0
17 Jun 2021
ChemRL-GEM: Geometry Enhanced Molecular Representation Learning for
  Property Prediction
ChemRL-GEM: Geometry Enhanced Molecular Representation Learning for Property Prediction
Xiaomin Fang
Lihang Liu
Jieqiong Lei
Donglong He
Shanzhuo Zhang
Jingbo Zhou
Fan Wang
Hua-Hong Wu
Haifeng Wang
AI4CE
16
431
0
11 Jun 2021
Do Transformers Really Perform Bad for Graph Representation?
Do Transformers Really Perform Bad for Graph Representation?
Chengxuan Ying
Tianle Cai
Shengjie Luo
Shuxin Zheng
Guolin Ke
Di He
Yanming Shen
Tie-Yan Liu
GNN
28
433
0
09 Jun 2021
Predicting times of waiting on red signals using BERT
Predicting times of waiting on red signals using BERT
Witold Szejgis
Anna Warno
P. Góra
21
1
0
20 Feb 2021
Factor Graph Molecule Network for Structure Elucidation
Factor Graph Molecule Network for Structure Elucidation
Hieu Le Trung
Yiqing Xu
Wee Sun Lee
GNN
11
0
0
10 Dec 2020
Directed Graph Attention Neural Network Utilizing 3D Coordinates for
  Molecular Property Prediction
Directed Graph Attention Neural Network Utilizing 3D Coordinates for Molecular Property Prediction
Chao Qian
Yunhai Xiong
Xiang Chen
6
13
0
01 Dec 2020
Molecular representation learning with language models and
  domain-relevant auxiliary tasks
Molecular representation learning with language models and domain-relevant auxiliary tasks
Benedek Fabian
T. Edlich
H. Gaspar
Marwin H. S. Segler
Joshua Meyers
Marco Fiscato
Mohamed Ahmed
13
124
0
26 Nov 2020
Comparison of Atom Representations in Graph Neural Networks for
  Molecular Property Prediction
Comparison of Atom Representations in Graph Neural Networks for Molecular Property Prediction
Agnieszka Pocha
Tomasz Danel
Lukasz Maziarka
GNN
32
7
0
23 Nov 2020
ChemBERTa: Large-Scale Self-Supervised Pretraining for Molecular
  Property Prediction
ChemBERTa: Large-Scale Self-Supervised Pretraining for Molecular Property Prediction
Seyone Chithrananda
Gabriel Grand
Bharath Ramsundar
AI4CE
20
388
0
19 Oct 2020
Distance Encoding: Design Provably More Powerful Neural Networks for
  Graph Representation Learning
Distance Encoding: Design Provably More Powerful Neural Networks for Graph Representation Learning
Pan Li
Yanbang Wang
Hongwei Wang
J. Leskovec
GNN
23
12
0
31 Aug 2020
Making Neural Networks Interpretable with Attribution: Application to
  Implicit Signals Prediction
Making Neural Networks Interpretable with Attribution: Application to Implicit Signals Prediction
Darius Afchar
Romain Hennequin
FAtt
XAI
36
16
0
26 Aug 2020
Data Movement Is All You Need: A Case Study on Optimizing Transformers
Data Movement Is All You Need: A Case Study on Optimizing Transformers
A. Ivanov
Nikoli Dryden
Tal Ben-Nun
Shigang Li
Torsten Hoefler
28
130
0
30 Jun 2020
GEOM: Energy-annotated molecular conformations for property prediction
  and molecular generation
GEOM: Energy-annotated molecular conformations for property prediction and molecular generation
Simon Axelrod
Rafael Gómez-Bombarelli
3DV
AI4CE
28
205
0
09 Jun 2020
Graph-Aware Transformer: Is Attention All Graphs Need?
Graph-Aware Transformer: Is Attention All Graphs Need?
Sang-yong Yoo
Young-Seok Kim
Kang Lee
Kuhwan Jeong
Junhwi Choi
Hoshik Lee
Y. S. Choi
GNN
19
11
0
09 Jun 2020
MoleculeNet: A Benchmark for Molecular Machine Learning
MoleculeNet: A Benchmark for Molecular Machine Learning
Zhenqin Wu
Bharath Ramsundar
Evan N. Feinberg
Joseph Gomes
C. Geniesse
Aneesh S. Pappu
K. Leswing
Vijay S. Pande
OOD
172
1,778
0
02 Mar 2017
Previous
12