Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2002.07971
Cited By
Gradient Boosting Neural Networks: GrowNet
19 February 2020
Sarkhan Badirli
Xuanqing Liu
Zhengming Xing
Avradeep Bhowmik
Khoa D. Doan
S. Keerthi
FedML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Gradient Boosting Neural Networks: GrowNet"
17 / 17 papers shown
Title
Harnessing LLMs Explanations to Boost Surrogate Models in Tabular Data Classification
Ruxue Shi
Hengrui Gu
Xu Shen
Xin Wang
LMTD
178
0
0
09 May 2025
TabPFN Unleashed: A Scalable and Effective Solution to Tabular Classification Problems
Si-Yang Liu
Han-Jia Ye
68
6
0
04 Feb 2025
TabM: Advancing Tabular Deep Learning with Parameter-Efficient Ensembling
Yury Gorishniy
Akim Kotelnikov
Artem Babenko
LMTD
MoE
94
6
0
31 Oct 2024
TabSeq: A Framework for Deep Learning on Tabular Data via Sequential Ordering
A. Habib
Kesheng Wang
Mary-Anne Hartley
Gianfranco Doretto
Donald Adjeroh
LMTD
35
1
0
17 Oct 2024
Forecasting with Hyper-Trees
Alexander März
Kashif Rasul
44
0
0
13 May 2024
Multimodal Clinical Trial Outcome Prediction with Large Language Models
Wenhao Zheng
Dongsheng Peng
Hongxia Xu
Yun-Qing Li
Hongtu Zhu
Tianfan Fu
Huaxiu Yao
Huaxiu Yao
50
5
0
09 Feb 2024
A Gradient Boosting Approach for Training Convolutional and Deep Neural Networks
S. Emami
Gonzalo Martínez-Munoz
15
6
0
22 Feb 2023
Boosted Dynamic Neural Networks
Haichao Yu
Haoxiang Li
G. Hua
Gao Huang
Humphrey Shi
35
7
0
30 Nov 2022
Precision Machine Learning
Eric J. Michaud
Ziming Liu
Max Tegmark
24
34
0
24 Oct 2022
Towards Domain-Independent Supervised Discourse Parsing Through Gradient Boosting
Patrick Huber
Giuseppe Carenini
23
0
0
18 Oct 2022
Revisiting Pretraining Objectives for Tabular Deep Learning
Ivan Rubachev
Artem Alekberov
Yu. V. Gorishniy
Artem Babenko
LMTD
21
41
0
07 Jul 2022
Transfer Learning with Deep Tabular Models
Roman Levin
Valeriia Cherepanova
Avi Schwarzschild
Arpit Bansal
C. Bayan Bruss
Tom Goldstein
A. Wilson
Micah Goldblum
OOD
FedML
LMTD
75
58
0
30 Jun 2022
Transfer learning for ensembles: reducing computation time and keeping the diversity
Ilya Shashkov
Nikita Balabin
Evgeny Burnaev
Alexey Zaytsev
22
1
0
27 Jun 2022
On Embeddings for Numerical Features in Tabular Deep Learning
Yura Gorishniy
Ivan Rubachev
Artem Babenko
LMTD
13
156
0
10 Mar 2022
Revisiting Deep Learning Models for Tabular Data
Yu. V. Gorishniy
Ivan Rubachev
Valentin Khrulkov
Artem Babenko
LMTD
48
699
0
22 Jun 2021
A Generalized Stacking for Implementing Ensembles of Gradient Boosting Machines
A. Konstantinov
Lev V. Utkin
32
5
0
12 Oct 2020
Time-based Sequence Model for Personalization and Recommendation Systems
T. Ishkhanov
Maxim Naumov
Xianjie Chen
Yan Zhu
Yuan Zhong
A. Azzolini
Chonglin Sun
Frank Jiang
Andrey Malevich
Liang Xiong
30
16
0
27 Aug 2020
1