ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2002.07933
  4. Cited By
Improving Generalization by Controlling Label-Noise Information in
  Neural Network Weights

Improving Generalization by Controlling Label-Noise Information in Neural Network Weights

19 February 2020
Hrayr Harutyunyan
Kyle Reing
Greg Ver Steeg
Aram Galstyan
    NoLa
ArXivPDFHTML

Papers citing "Improving Generalization by Controlling Label-Noise Information in Neural Network Weights"

8 / 8 papers shown
Title
Leveraging Unlabeled Data to Track Memorization
Leveraging Unlabeled Data to Track Memorization
Mahsa Forouzesh
Hanie Sedghi
Patrick Thiran
NoLa
TDI
34
4
0
08 Dec 2022
Information-Theoretic Analysis of Unsupervised Domain Adaptation
Information-Theoretic Analysis of Unsupervised Domain Adaptation
Ziqiao Wang
Yongyi Mao
38
11
0
03 Oct 2022
Sparse Double Descent: Where Network Pruning Aggravates Overfitting
Sparse Double Descent: Where Network Pruning Aggravates Overfitting
Zhengqi He
Zeke Xie
Quanzhi Zhu
Zengchang Qin
77
27
0
17 Jun 2022
Continual Learning on Noisy Data Streams via Self-Purified Replay
Continual Learning on Noisy Data Streams via Self-Purified Replay
C. Kim
Jinseo Jeong
Sang-chul Moon
Gunhee Kim
CLL
40
39
0
14 Oct 2021
Deep Learning with Label Differential Privacy
Deep Learning with Label Differential Privacy
Badih Ghazi
Noah Golowich
Ravi Kumar
Pasin Manurangsi
Chiyuan Zhang
42
144
0
11 Feb 2021
Multi-Objective Interpolation Training for Robustness to Label Noise
Multi-Objective Interpolation Training for Robustness to Label Noise
Diego Ortego
Eric Arazo
Paul Albert
Noel E. O'Connor
Kevin McGuinness
NoLa
27
112
0
08 Dec 2020
Artificial Neural Variability for Deep Learning: On Overfitting, Noise
  Memorization, and Catastrophic Forgetting
Artificial Neural Variability for Deep Learning: On Overfitting, Noise Memorization, and Catastrophic Forgetting
Zeke Xie
Fengxiang He
Shaopeng Fu
Issei Sato
Dacheng Tao
Masashi Sugiyama
21
60
0
12 Nov 2020
A Survey of Label-noise Representation Learning: Past, Present and
  Future
A Survey of Label-noise Representation Learning: Past, Present and Future
Bo Han
Quanming Yao
Tongliang Liu
Gang Niu
Ivor W. Tsang
James T. Kwok
Masashi Sugiyama
NoLa
24
158
0
09 Nov 2020
1