ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2002.07867
  4. Cited By
Global Convergence of Deep Networks with One Wide Layer Followed by
  Pyramidal Topology

Global Convergence of Deep Networks with One Wide Layer Followed by Pyramidal Topology

18 February 2020
Quynh N. Nguyen
Marco Mondelli
    ODL
    AI4CE
ArXivPDFHTML

Papers citing "Global Convergence of Deep Networks with One Wide Layer Followed by Pyramidal Topology"

17 / 17 papers shown
Title
Feature Learning Beyond the Edge of Stability
Feature Learning Beyond the Edge of Stability
Dávid Terjék
MLT
46
0
0
18 Feb 2025
Implicit Bias and Fast Convergence Rates for Self-attention
Implicit Bias and Fast Convergence Rates for Self-attention
Bhavya Vasudeva
Puneesh Deora
Christos Thrampoulidis
34
13
0
08 Feb 2024
Architectural Strategies for the optimization of Physics-Informed Neural
  Networks
Architectural Strategies for the optimization of Physics-Informed Neural Networks
Hemanth Saratchandran
Shin-Fang Chng
Simon Lucey
AI4CE
36
0
0
05 Feb 2024
How Spurious Features Are Memorized: Precise Analysis for Random and NTK
  Features
How Spurious Features Are Memorized: Precise Analysis for Random and NTK Features
Simone Bombari
Marco Mondelli
AAML
19
4
0
20 May 2023
On the effectiveness of neural priors in modeling dynamical systems
On the effectiveness of neural priors in modeling dynamical systems
Sameera Ramasinghe
Hemanth Saratchandran
Violetta Shevchenko
Simon Lucey
29
2
0
10 Mar 2023
On the Convergence of the Gradient Descent Method with Stochastic Fixed-point Rounding Errors under the Polyak-Lojasiewicz Inequality
On the Convergence of the Gradient Descent Method with Stochastic Fixed-point Rounding Errors under the Polyak-Lojasiewicz Inequality
Lu Xia
M. Hochstenbach
Stefano Massei
27
2
0
23 Jan 2023
Characterizing the Spectrum of the NTK via a Power Series Expansion
Characterizing the Spectrum of the NTK via a Power Series Expansion
Michael Murray
Hui Jin
Benjamin Bowman
Guido Montúfar
35
11
0
15 Nov 2022
On skip connections and normalisation layers in deep optimisation
On skip connections and normalisation layers in deep optimisation
L. MacDonald
Jack Valmadre
Hemanth Saratchandran
Simon Lucey
ODL
19
1
0
10 Oct 2022
Magnitude and Angle Dynamics in Training Single ReLU Neurons
Magnitude and Angle Dynamics in Training Single ReLU Neurons
Sangmin Lee
Byeongsu Sim
Jong Chul Ye
MLT
96
6
0
27 Sep 2022
Approximation results for Gradient Descent trained Shallow Neural
  Networks in $1d$
Approximation results for Gradient Descent trained Shallow Neural Networks in 1d1d1d
R. Gentile
G. Welper
ODL
52
6
0
17 Sep 2022
Generalization Properties of NAS under Activation and Skip Connection
  Search
Generalization Properties of NAS under Activation and Skip Connection Search
Zhenyu Zhu
Fanghui Liu
Grigorios G. Chrysos
V. Cevher
AI4CE
28
15
0
15 Sep 2022
Global Convergence of Over-parameterized Deep Equilibrium Models
Global Convergence of Over-parameterized Deep Equilibrium Models
Zenan Ling
Xingyu Xie
Qiuhao Wang
Zongpeng Zhang
Zhouchen Lin
32
12
0
27 May 2022
Implicit Bias of MSE Gradient Optimization in Underparameterized Neural
  Networks
Implicit Bias of MSE Gradient Optimization in Underparameterized Neural Networks
Benjamin Bowman
Guido Montúfar
20
11
0
12 Jan 2022
Rethinking Influence Functions of Neural Networks in the
  Over-parameterized Regime
Rethinking Influence Functions of Neural Networks in the Over-parameterized Regime
Rui Zhang
Shihua Zhang
TDI
21
21
0
15 Dec 2021
Subquadratic Overparameterization for Shallow Neural Networks
Subquadratic Overparameterization for Shallow Neural Networks
Chaehwan Song
Ali Ramezani-Kebrya
Thomas Pethick
Armin Eftekhari
V. Cevher
27
31
0
02 Nov 2021
A global convergence theory for deep ReLU implicit networks via
  over-parameterization
A global convergence theory for deep ReLU implicit networks via over-parameterization
Tianxiang Gao
Hailiang Liu
Jia Liu
Hridesh Rajan
Hongyang Gao
MLT
25
16
0
11 Oct 2021
Tight Bounds on the Smallest Eigenvalue of the Neural Tangent Kernel for
  Deep ReLU Networks
Tight Bounds on the Smallest Eigenvalue of the Neural Tangent Kernel for Deep ReLU Networks
Quynh N. Nguyen
Marco Mondelli
Guido Montúfar
25
81
0
21 Dec 2020
1