Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2002.07767
Cited By
Learning by Semantic Similarity Makes Abstractive Summarization Better
18 February 2020
Wonjin Yoon
Yoonsun Yeo
Minbyul Jeong
Bong-Jun Yi
Jaewoo Kang
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Learning by Semantic Similarity Makes Abstractive Summarization Better"
7 / 7 papers shown
Title
Controlling keywords and their positions in text generation
Yuichi Sasazawa
Terufumi Morishita
Hiroaki Ozaki
Osamu Imaichi
Yasuhiro Sogawa
30
2
0
19 Apr 2023
InfoLM: A New Metric to Evaluate Summarization & Data2Text Generation
Pierre Colombo
Chloe Clave
Pablo Piantanida
40
41
0
02 Dec 2021
Automatic Text Evaluation through the Lens of Wasserstein Barycenters
Pierre Colombo
Guillaume Staerman
Chloé Clavel
Pablo Piantanida
27
41
0
27 Aug 2021
How well do you know your summarization datasets?
Priyam Tejaswin
Dhruv Naik
Peng Liu
33
26
0
21 Jun 2021
A Pseudo-Metric between Probability Distributions based on Depth-Trimmed Regions
Guillaume Staerman
Pavlo Mozharovskyi
Pierre Colombo
Stéphan Clémenccon
Florence dÁlché-Buc
OOD
69
17
0
23 Mar 2021
The GEM Benchmark: Natural Language Generation, its Evaluation and Metrics
Sebastian Gehrmann
Tosin Adewumi
Karmanya Aggarwal
Pawan Sasanka Ammanamanchi
Aremu Anuoluwapo
...
Nishant Subramani
Wei Xu
Diyi Yang
Akhila Yerukola
Jiawei Zhou
VLM
260
285
0
02 Feb 2021
Text Summarization with Pretrained Encoders
Yang Liu
Mirella Lapata
MILM
261
1,436
0
22 Aug 2019
1