ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2002.07285
  4. Cited By
Double/Debiased Machine Learning for Dynamic Treatment Effects via
  g-Estimation

Double/Debiased Machine Learning for Dynamic Treatment Effects via g-Estimation

17 February 2020
Greg Lewis
Vasilis Syrgkanis
    CML
ArXivPDFHTML

Papers citing "Double/Debiased Machine Learning for Dynamic Treatment Effects via g-Estimation"

10 / 10 papers shown
Title
Model-agnostic meta-learners for estimating heterogeneous treatment effects over time
Model-agnostic meta-learners for estimating heterogeneous treatment effects over time
Dennis Frauen
Konstantin Hess
Stefan Feuerriegel
42
7
0
07 Jul 2024
Causal Dynamic Variational Autoencoder for Counterfactual Regression in Longitudinal Data
Causal Dynamic Variational Autoencoder for Counterfactual Regression in Longitudinal Data
Mouad El Bouchattaoui
Myriam Tami
Benoit Lepetit
P. Cournède
CML
OOD
76
2
0
16 Oct 2023
Inference on Optimal Dynamic Policies via Softmax Approximation
Inference on Optimal Dynamic Policies via Softmax Approximation
Qizhao Chen
Morgane Austern
Vasilis Syrgkanis
OffRL
46
1
0
08 Mar 2023
Synthetic Blip Effects: Generalizing Synthetic Controls for the Dynamic
  Treatment Regime
Synthetic Blip Effects: Generalizing Synthetic Controls for the Dynamic Treatment Regime
Anish Agarwal
Vasilis Syrgkanis
CML
33
3
0
20 Oct 2022
Average Adjusted Association: Efficient Estimation with High Dimensional
  Confounders
Average Adjusted Association: Efficient Estimation with High Dimensional Confounders
S. Jun
S. Lee
43
1
0
27 May 2022
Sequential Kernel Embedding for Mediated and Time-Varying Dose Response Curves
Sequential Kernel Embedding for Mediated and Time-Varying Dose Response Curves
Rahul Singh
Liyuan Xu
Arthur Gretton
43
3
0
06 Nov 2021
Robust Orthogonal Machine Learning of Treatment Effects
Robust Orthogonal Machine Learning of Treatment Effects
Yiyan Huang
Cheuk Hang Leung
Qi Wu
Xing Yan
OOD
CML
21
0
0
22 Mar 2021
Estimating the Long-Term Effects of Novel Treatments
Estimating the Long-Term Effects of Novel Treatments
Keith Battocchi
E. Dillon
Maggie Hei
Greg Lewis
M. Oprescu
Vasilis Syrgkanis
CML
24
10
0
15 Mar 2021
Evaluating (weighted) dynamic treatment effects by double machine
  learning
Evaluating (weighted) dynamic treatment effects by double machine learning
Hugo Bodory
M. Huber
Lukávs Lafférs
CML
27
43
0
01 Dec 2020
Double Reinforcement Learning for Efficient Off-Policy Evaluation in
  Markov Decision Processes
Double Reinforcement Learning for Efficient Off-Policy Evaluation in Markov Decision Processes
Nathan Kallus
Masatoshi Uehara
OffRL
52
183
0
22 Aug 2019
1