ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2002.07264
  4. Cited By
Combining SchNet and SHARC: The SchNarc machine learning approach for
  excited-state dynamics

Combining SchNet and SHARC: The SchNarc machine learning approach for excited-state dynamics

17 February 2020
Julia Westermayr
M. Gastegger
P. Marquetand
    AI4CE
ArXivPDFHTML

Papers citing "Combining SchNet and SHARC: The SchNarc machine learning approach for excited-state dynamics"

3 / 3 papers shown
Title
A practical guide to machine learning interatomic potentials -- Status and future
Ryan Jacobs
D. Morgan
Siamak Attarian
Jun Meng
Chen Shen
...
K. J. Schmidt
So Takamoto
Aidan Thompson
Julia Westermayr
Brandon M. Wood
66
6
0
12 Mar 2025
Neural networks and kernel ridge regression for excited states dynamics
  of CH$_2$NH$_2^+$: From single-state to multi-state representations and
  multi-property machine learning models
Neural networks and kernel ridge regression for excited states dynamics of CH2_22​NH2+_2^+2+​: From single-state to multi-state representations and multi-property machine learning models
Julia Westermayr
Felix A Faber
Anders S. Christensen
O. von Lilienfeld
P. Marquetand
22
40
0
18 Dec 2019
Machine learning enables long time scale molecular photodynamics
  simulations
Machine learning enables long time scale molecular photodynamics simulations
Julia Westermayr
M. Gastegger
M. Menger
Sebastian Mai
L. González
Marquetand
AI4CE
18
72
0
22 Nov 2018
1