Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2002.07264
Cited By
Combining SchNet and SHARC: The SchNarc machine learning approach for excited-state dynamics
17 February 2020
Julia Westermayr
M. Gastegger
P. Marquetand
AI4CE
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Combining SchNet and SHARC: The SchNarc machine learning approach for excited-state dynamics"
3 / 3 papers shown
Title
A practical guide to machine learning interatomic potentials -- Status and future
Ryan Jacobs
D. Morgan
Siamak Attarian
Jun Meng
Chen Shen
...
K. J. Schmidt
So Takamoto
Aidan Thompson
Julia Westermayr
Brandon M. Wood
66
6
0
12 Mar 2025
Neural networks and kernel ridge regression for excited states dynamics of CH
2
_2
2
NH
2
+
_2^+
2
+
: From single-state to multi-state representations and multi-property machine learning models
Julia Westermayr
Felix A Faber
Anders S. Christensen
O. von Lilienfeld
P. Marquetand
22
40
0
18 Dec 2019
Machine learning enables long time scale molecular photodynamics simulations
Julia Westermayr
M. Gastegger
M. Menger
Sebastian Mai
L. González
Marquetand
AI4CE
18
72
0
22 Nov 2018
1