ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2002.07007
  4. Cited By
The Synthesizability of Molecules Proposed by Generative Models

The Synthesizability of Molecules Proposed by Generative Models

17 February 2020
Wenhao Gao
Connor W. Coley
ArXivPDFHTML

Papers citing "The Synthesizability of Molecules Proposed by Generative Models"

13 / 13 papers shown
Title
Guided Multi-objective Generative AI to Enhance Structure-based Drug Design
Guided Multi-objective Generative AI to Enhance Structure-based Drug Design
Amit Kadan
Kevin Ryczko
Erika Lloyd
A. Roitberg
Takeshi Yamazaki
109
1
0
20 May 2024
Generative chemistry: drug discovery with deep learning generative
  models
Generative chemistry: drug discovery with deep learning generative models
Yuemin Bian
X. Xie
AI4CE
65
95
0
20 Aug 2020
ChemBO: Bayesian Optimization of Small Organic Molecules with
  Synthesizable Recommendations
ChemBO: Bayesian Optimization of Small Organic Molecules with Synthesizable Recommendations
Ksenia Korovina
Sailun Xu
Kirthevasan Kandasamy
Willie Neiswanger
Barnabás Póczós
J. Schneider
Eric Xing
60
122
0
05 Aug 2019
A Model to Search for Synthesizable Molecules
A Model to Search for Synthesizable Molecules
John Bradshaw
Brooks Paige
Matt J. Kusner
Marwin H. S. Segler
José Miguel Hernández-Lobato
49
108
0
12 Jun 2019
Meta-learning of Sequential Strategies
Meta-learning of Sequential Strategies
Pedro A. Ortega
Jane X. Wang
Mark Rowland
Tim Genewein
Z. Kurth-Nelson
...
Yee Whye Teh
H. V. Hasselt
Nando de Freitas
M. Botvinick
Shane Legg
OffRL
89
98
0
08 May 2019
Deep learning for molecular design - a review of the state of the art
Deep learning for molecular design - a review of the state of the art
Daniel C. Elton
Zois Boukouvalas
M. Fuge
Peter W. Chung
AI4CE
3DV
55
328
0
11 Mar 2019
Molecular Sets (MOSES): A Benchmarking Platform for Molecular Generation
  Models
Molecular Sets (MOSES): A Benchmarking Platform for Molecular Generation Models
Daniil Polykovskiy
Alexander Zhebrak
Benjamín Sánchez-Lengeling
Sergey Golovanov
Oktai Tatanov
...
Simon Johansson
Hongming Chen
Sergey I. Nikolenko
Alán Aspuru-Guzik
Alex Zhavoronkov
ELM
228
644
0
29 Nov 2018
GuacaMol: Benchmarking Models for De Novo Molecular Design
GuacaMol: Benchmarking Models for De Novo Molecular Design
Nathan Brown
Marco Fiscato
Marwin H. S. Segler
Alain C. Vaucher
ELM
80
703
0
22 Nov 2018
Molecular Transformer - A Model for Uncertainty-Calibrated Chemical
  Reaction Prediction
Molecular Transformer - A Model for Uncertainty-Calibrated Chemical Reaction Prediction
P. Schwaller
Teodoro Laino
John McGuinness
A. Horváth
Constantine Bekas
A. Lee
83
730
0
06 Nov 2018
Optimization of Molecules via Deep Reinforcement Learning
Optimization of Molecules via Deep Reinforcement Learning
Zhenpeng Zhou
S. Kearnes
Li Li
R. Zare
Patrick F. Riley
AI4CE
68
537
0
19 Oct 2018
Molecular Generation with Recurrent Neural Networks (RNNs)
Molecular Generation with Recurrent Neural Networks (RNNs)
E. Bjerrum
Richard Threlfall
43
111
0
12 May 2017
Automatic chemical design using a data-driven continuous representation
  of molecules
Automatic chemical design using a data-driven continuous representation of molecules
Rafael Gómez-Bombarelli
Jennifer N. Wei
David Duvenaud
José Miguel Hernández-Lobato
Benjamín Sánchez-Lengeling
Dennis Sheberla
J. Aguilera-Iparraguirre
Timothy D. Hirzel
Ryan P. Adams
Alán Aspuru-Guzik
3DV
114
2,911
0
07 Oct 2016
Auto-Encoding Variational Bayes
Auto-Encoding Variational Bayes
Diederik P. Kingma
Max Welling
BDL
344
16,972
0
20 Dec 2013
1