Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2002.06716
Cited By
Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data
17 February 2020
Charles H. Martin
Tongsu Peng
Peng
Michael W. Mahoney
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data"
14 / 64 papers shown
Title
Evaluating natural language processing models with generalization metrics that do not need access to any training or testing data
Yaoqing Yang
Ryan Theisen
Liam Hodgkinson
Joseph E. Gonzalez
Kannan Ramchandran
Charles H. Martin
Michael W. Mahoney
86
17
0
06 Feb 2022
Separation of Scales and a Thermodynamic Description of Feature Learning in Some CNNs
Inbar Seroussi
Gadi Naveh
Z. Ringel
30
50
0
31 Dec 2021
Learning from learning machines: a new generation of AI technology to meet the needs of science
L. Pion-Tonachini
K. Bouchard
Héctor García Martín
S. Peisert
W. B. Holtz
...
Rick L. Stevens
Mark Anderson
Ken Kreutz-Delgado
Michael W. Mahoney
James B. Brown
30
7
0
27 Nov 2021
Impact of classification difficulty on the weight matrices spectra in Deep Learning and application to early-stopping
Xuran Meng
Jianfeng Yao
22
7
0
26 Nov 2021
An Operator Theoretic View on Pruning Deep Neural Networks
William T. Redman
M. Fonoberova
Ryan Mohr
Y. Kevrekidis
Igor Mezić
38
17
0
28 Oct 2021
Generalization Bounds using Lower Tail Exponents in Stochastic Optimizers
Liam Hodgkinson
Umut Simsekli
Rajiv Khanna
Michael W. Mahoney
22
20
0
02 Aug 2021
Taxonomizing local versus global structure in neural network loss landscapes
Yaoqing Yang
Liam Hodgkinson
Ryan Theisen
Joe Zou
Joseph E. Gonzalez
Kannan Ramchandran
Michael W. Mahoney
32
36
0
23 Jul 2021
Post-mortem on a deep learning contest: a Simpson's paradox and the complementary roles of scale metrics versus shape metrics
Charles H. Martin
Michael W. Mahoney
18
19
0
01 Jun 2021
Hessian Eigenspectra of More Realistic Nonlinear Models
Zhenyu Liao
Michael W. Mahoney
17
29
0
02 Mar 2021
Perceptron Theory Can Predict the Accuracy of Neural Networks
Denis Kleyko
A. Rosato
E. P. Frady
Massimo Panella
Friedrich T. Sommer
GNN
28
10
0
14 Dec 2020
Sparse Quantized Spectral Clustering
Zhenyu Liao
Romain Couillet
Michael W. Mahoney
MQ
19
15
0
03 Oct 2020
Implicit Self-Regularization in Deep Neural Networks: Evidence from Random Matrix Theory and Implications for Learning
Charles H. Martin
Michael W. Mahoney
AI4CE
32
190
0
02 Oct 2018
Cleaning large correlation matrices: tools from random matrix theory
J. Bun
J. Bouchaud
M. Potters
32
262
0
25 Oct 2016
Norm-Based Capacity Control in Neural Networks
Behnam Neyshabur
Ryota Tomioka
Nathan Srebro
119
577
0
27 Feb 2015
Previous
1
2