Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2002.06286
Cited By
Non-asymptotic Convergence of Adam-type Reinforcement Learning Algorithms under Markovian Sampling
15 February 2020
Huaqing Xiong
Tengyu Xu
Yingbin Liang
Wei Zhang
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Non-asymptotic Convergence of Adam-type Reinforcement Learning Algorithms under Markovian Sampling"
8 / 8 papers shown
Title
Fast Two-Time-Scale Stochastic Gradient Method with Applications in Reinforcement Learning
Sihan Zeng
Thinh T. Doan
56
5
0
15 May 2024
On the Stochastic (Variance-Reduced) Proximal Gradient Method for Regularized Expected Reward Optimization
Ling Liang
Haizhao Yang
14
1
0
23 Jan 2024
Markov Chain Score Ascent: A Unifying Framework of Variational Inference with Markovian Gradients
Kyurae Kim
Jisu Oh
Jacob R. Gardner
Adji Bousso Dieng
Hongseok Kim
BDL
37
8
0
13 Jun 2022
Recent Advances in Reinforcement Learning in Finance
B. Hambly
Renyuan Xu
Huining Yang
OffRL
29
168
0
08 Dec 2021
Doubly Robust Off-Policy Actor-Critic: Convergence and Optimality
Tengyu Xu
Zhuoran Yang
Zhaoran Wang
Yingbin Liang
OffRL
47
24
0
23 Feb 2021
CRPO: A New Approach for Safe Reinforcement Learning with Convergence Guarantee
Tengyu Xu
Yingbin Liang
Guanghui Lan
52
122
0
11 Nov 2020
Sample Efficient Reinforcement Learning with REINFORCE
Junzi Zhang
Jongho Kim
Brendan O'Donoghue
Stephen P. Boyd
42
101
0
22 Oct 2020
Non-asymptotic Convergence Analysis of Two Time-scale (Natural) Actor-Critic Algorithms
Tengyu Xu
Zhe Wang
Yingbin Liang
26
57
0
07 May 2020
1