Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2002.06262
Cited By
Why Do Deep Residual Networks Generalize Better than Deep Feedforward Networks? -- A Neural Tangent Kernel Perspective
14 February 2020
Kaixuan Huang
Yuqing Wang
Molei Tao
T. Zhao
MLT
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Why Do Deep Residual Networks Generalize Better than Deep Feedforward Networks? -- A Neural Tangent Kernel Perspective"
22 / 22 papers shown
Title
Improve Generalization Ability of Deep Wide Residual Network with A Suitable Scaling Factor
Songtao Tian
Zixiong Yu
32
1
0
07 Mar 2024
Fast and Exact Enumeration of Deep Networks Partitions Regions
Randall Balestriero
Yann LeCun
18
5
0
20 Jan 2024
On the Neural Tangent Kernel of Equilibrium Models
Zhili Feng
J. Zico Kolter
18
6
0
21 Oct 2023
The Interpolating Information Criterion for Overparameterized Models
Liam Hodgkinson
Christopher van der Heide
Roberto Salomone
Fred Roosta
Michael W. Mahoney
20
7
0
15 Jul 2023
Provable Guarantees for Nonlinear Feature Learning in Three-Layer Neural Networks
Eshaan Nichani
Alexandru Damian
Jason D. Lee
MLT
44
13
0
11 May 2023
A Kernel Perspective of Skip Connections in Convolutional Networks
Daniel Barzilai
Amnon Geifman
Meirav Galun
Ronen Basri
23
12
0
27 Nov 2022
Dynamical systems' based neural networks
E. Celledoni
Davide Murari
B. Owren
Carola-Bibiane Schönlieb
Ferdia Sherry
OOD
46
12
0
05 Oct 2022
Generalization Properties of NAS under Activation and Skip Connection Search
Zhenyu Zhu
Fanghui Liu
Grigorios G. Chrysos
V. Cevher
AI4CE
33
15
0
15 Sep 2022
Provable Acceleration of Nesterov's Accelerated Gradient Method over Heavy Ball Method in Training Over-Parameterized Neural Networks
Xin Liu
Wei Tao
Wei Li
Dazhi Zhan
Jun Wang
Zhisong Pan
ODL
30
1
0
08 Aug 2022
Analyzing Tree Architectures in Ensembles via Neural Tangent Kernel
Ryuichi Kanoh
M. Sugiyama
31
2
0
25 May 2022
Deep Architecture Connectivity Matters for Its Convergence: A Fine-Grained Analysis
Wuyang Chen
Wei Huang
Xinyu Gong
Boris Hanin
Zhangyang Wang
35
7
0
11 May 2022
Wide and Deep Neural Networks Achieve Optimality for Classification
Adityanarayanan Radhakrishnan
M. Belkin
Caroline Uhler
27
18
0
29 Apr 2022
Generalization Through The Lens Of Leave-One-Out Error
Gregor Bachmann
Thomas Hofmann
Aurelien Lucchi
67
7
0
07 Mar 2022
An Interpretive Constrained Linear Model for ResNet and MgNet
Juncai He
Jinchao Xu
Lian Zhang
Jianqing Zhu
6
18
0
14 Dec 2021
On the Convergence of Shallow Neural Network Training with Randomly Masked Neurons
Fangshuo Liao
Anastasios Kyrillidis
49
16
0
05 Dec 2021
Deep Networks Provably Classify Data on Curves
Tingran Wang
Sam Buchanan
D. Gilboa
John N. Wright
23
9
0
29 Jul 2021
A Neural Tangent Kernel Perspective of GANs
Jean-Yves Franceschi
Emmanuel de Bézenac
Ibrahim Ayed
Mickaël Chen
Sylvain Lamprier
Patrick Gallinari
37
26
0
10 Jun 2021
Generalization Guarantees for Neural Architecture Search with Train-Validation Split
Samet Oymak
Mingchen Li
Mahdi Soltanolkotabi
AI4CE
OOD
36
13
0
29 Apr 2021
Experiments with Rich Regime Training for Deep Learning
Xinyan Li
A. Banerjee
32
2
0
26 Feb 2021
A Convergence Theory Towards Practical Over-parameterized Deep Neural Networks
Asaf Noy
Yi Tian Xu
Y. Aflalo
Lihi Zelnik-Manor
Rong Jin
41
3
0
12 Jan 2021
Gradient Starvation: A Learning Proclivity in Neural Networks
Mohammad Pezeshki
Sekouba Kaba
Yoshua Bengio
Aaron Courville
Doina Precup
Guillaume Lajoie
MLT
50
258
0
18 Nov 2020
On the Similarity between the Laplace and Neural Tangent Kernels
Amnon Geifman
A. Yadav
Yoni Kasten
Meirav Galun
David Jacobs
Ronen Basri
23
89
0
03 Jul 2020
1