ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2002.06144
  4. Cited By
Combining Visual and Textual Features for Semantic Segmentation of
  Historical Newspapers
v1v2v3v4 (latest)

Combining Visual and Textual Features for Semantic Segmentation of Historical Newspapers

14 February 2020
Raphaël Barman
Maud Ehrmann
Simon Clematide
S. Oliveira
F. Kaplan
ArXiv (abs)PDFHTML

Papers citing "Combining Visual and Textual Features for Semantic Segmentation of Historical Newspapers"

12 / 12 papers shown
Title
Using Word Embeddings to Examine Gender Bias in Dutch Newspapers,
  1950-1990
Using Word Embeddings to Examine Gender Bias in Dutch Newspapers, 1950-1990
M. Wevers
83
33
0
21 Jul 2019
The VIA Annotation Software for Images, Audio and Video
The VIA Annotation Software for Images, Audio and Video
Abhishek Dutta
Andrew Zisserman
79
867
0
24 Apr 2019
Chargrid: Towards Understanding 2D Documents
Chargrid: Towards Understanding 2D Documents
Anoop R. Katti
C. Reisswig
Cordula Guder
Sebastian Brarda
S. Bickel
Johannes Höhne
Jean Baptiste Faddoul
73
195
0
24 Sep 2018
dhSegment: A generic deep-learning approach for document segmentation
dhSegment: A generic deep-learning approach for document segmentation
S. Oliveira
Benoit Seguin
F. Kaplan
SSeg
63
172
0
27 Apr 2018
Deep contextualized word representations
Deep contextualized word representations
Matthew E. Peters
Mark Neumann
Mohit Iyyer
Matt Gardner
Christopher Clark
Kenton Lee
Luke Zettlemoyer
NAI
233
11,565
0
15 Feb 2018
BPEmb: Tokenization-free Pre-trained Subword Embeddings in 275 Languages
BPEmb: Tokenization-free Pre-trained Subword Embeddings in 275 Languages
Benjamin Heinzerling
Michael Strube
66
232
0
05 Oct 2017
Learning to Extract Semantic Structure from Documents Using Multimodal
  Fully Convolutional Neural Network
Learning to Extract Semantic Structure from Documents Using Multimodal Fully Convolutional Neural Network
Xiao Yang
Ersin Yumer
P. Asente
Mike Kraley
Daniel Kifer
C. Lee Giles
78
230
0
07 Jun 2017
Convolutional Neural Networks for Page Segmentation of Historical
  Document Images
Convolutional Neural Networks for Page Segmentation of Historical Document Images
Kai Chen
Mathias Seuret
SSeg
51
86
0
05 Apr 2017
Batch Renormalization: Towards Reducing Minibatch Dependence in
  Batch-Normalized Models
Batch Renormalization: Towards Reducing Minibatch Dependence in Batch-Normalized Models
Sergey Ioffe
BDL
71
541
0
10 Feb 2017
Enriching Word Vectors with Subword Information
Enriching Word Vectors with Subword Information
Piotr Bojanowski
Edouard Grave
Armand Joulin
Tomas Mikolov
NAISSLVLM
234
9,986
0
15 Jul 2016
Neural Machine Translation of Rare Words with Subword Units
Neural Machine Translation of Rare Words with Subword Units
Rico Sennrich
Barry Haddow
Alexandra Birch
238
7,760
0
31 Aug 2015
Natural Language Processing (almost) from Scratch
Natural Language Processing (almost) from Scratch
R. Collobert
Jason Weston
Léon Bottou
Michael Karlen
Koray Kavukcuoglu
Pavel P. Kuksa
203
7,729
0
02 Mar 2011
1