Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2002.05933
Cited By
Approximation Bounds for Random Neural Networks and Reservoir Systems
14 February 2020
Lukas Gonon
Lyudmila Grigoryeva
Juan-Pablo Ortega
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Approximation Bounds for Random Neural Networks and Reservoir Systems"
31 / 31 papers shown
Title
Online Federation For Mixtures of Proprietary Agents with Black-Box Encoders
Xuwei Yang
Fatemeh Tavakoli
D. B. Emerson
Anastasis Kratsios
FedML
62
0
0
30 Apr 2025
Squared families: Searching beyond regular probability models
Russell Tsuchida
Jiawei Liu
Cheng Soon Ong
Dino Sejdinovic
44
0
0
27 Mar 2025
How more data can hurt: Instability and regularization in next-generation reservoir computing
Yuanzhao Zhang
Edmilson Roque dos Santos
Sean P. Cornelius
88
2
0
28 Jan 2025
Deep Kalman Filters Can Filter
Blanka Hovart
Anastasis Kratsios
Yannick Limmer
Xuwei Yang
53
1
0
31 Dec 2024
RandNet-Parareal: a time-parallel PDE solver using Random Neural Networks
Guglielmo Gattiglio
Lyudmila Grigoryeva
M. Tamborrino
39
1
0
09 Nov 2024
Parallel-in-Time Solutions with Random Projection Neural Networks
M. Betcke
L. Kreusser
Davide Murari
29
1
0
19 Aug 2024
Operator Learning Using Random Features: A Tool for Scientific Computing
Nicholas H. Nelsen
Andrew M. Stuart
45
12
0
12 Aug 2024
Expressivity of Neural Networks with Random Weights and Learned Biases
Ezekiel Williams
Avery Hee-Woon Ryoo
Thomas Jiralerspong
Alexandre Payeur
M. Perich
Luca Mazzucato
Guillaume Lajoie
38
2
0
01 Jul 2024
Universal randomised signatures for generative time series modelling
Francesca Biagini
Lukas Gonon
Niklas Walter
42
4
0
14 Jun 2024
Full error analysis of the random deep splitting method for nonlinear parabolic PDEs and PIDEs
Ariel Neufeld
Philipp Schmocker
Sizhou Wu
45
7
0
08 May 2024
Convergence of Gradient Descent for Recurrent Neural Networks: A Nonasymptotic Analysis
Semih Cayci
A. Eryilmaz
26
3
0
19 Feb 2024
Approximation Rates and VC-Dimension Bounds for (P)ReLU MLP Mixture of Experts
Anastasis Kratsios
Haitz Sáez de Ocáriz Borde
Takashi Furuya
Marc T. Law
MoE
41
1
0
05 Feb 2024
Unsupervised Random Quantum Networks for PDEs
Josh Dees
Antoine Jacquier
Sylvain Laizet
21
2
0
21 Dec 2023
A Theoretical Analysis of the Test Error of Finite-Rank Kernel Ridge Regression
Tin Sum Cheng
Aurelien Lucchi
Ivan Dokmanić
Anastasis Kratsios
David Belius
37
4
0
02 Oct 2023
Regret-Optimal Federated Transfer Learning for Kernel Regression with Applications in American Option Pricing
Xuwei Yang
Anastasis Kratsios
Florian Krach
Matheus Grasselli
Aurelien Lucchi
FedML
21
2
0
08 Sep 2023
Error Bounds for Learning with Vector-Valued Random Features
S. Lanthaler
Nicholas H. Nelsen
27
12
0
26 May 2023
Infinite-dimensional reservoir computing
Lukas Gonon
Lyudmila Grigoryeva
Juan-Pablo Ortega
42
8
0
02 Apr 2023
A Brief Survey on the Approximation Theory for Sequence Modelling
Hao Jiang
Qianxiao Li
Zhong Li
Shida Wang
AI4TS
30
12
0
27 Feb 2023
Langevin dynamics based algorithm e-TH
ε
\varepsilon
ε
O POULA for stochastic optimization problems with discontinuous stochastic gradient
Dongjae Lim
Ariel Neufeld
Sotirios Sabanis
Ying Zhang
22
6
0
24 Oct 2022
Chaotic Hedging with Iterated Integrals and Neural Networks
Ariel Neufeld
Philipp Schmocker
39
10
0
21 Sep 2022
Universality and approximation bounds for echo state networks with random weights
Zhen Li
Yunfei Yang
14
5
0
12 Jun 2022
Universal Approximation Under Constraints is Possible with Transformers
Anastasis Kratsios
Behnoosh Zamanlooy
Tianlin Liu
Ivan Dokmanić
53
26
0
07 Oct 2021
Path classification by stochastic linear recurrent neural networks
Wiebke Bartolomaeus
Youness Boutaib
Sandra Nestler
Holger Rauhut
29
3
0
06 Aug 2021
Convergence rates for shallow neural networks learned by gradient descent
Alina Braun
Michael Kohler
S. Langer
Harro Walk
22
10
0
20 Jul 2021
Non-asymptotic estimates for TUSLA algorithm for non-convex learning with applications to neural networks with ReLU activation function
Dongjae Lim
Ariel Neufeld
Sotirios Sabanis
Ying Zhang
41
19
0
19 Jul 2021
Random feature neural networks learn Black-Scholes type PDEs without curse of dimensionality
Lukas Gonon
21
35
0
14 Jun 2021
Error Bounds of the Invariant Statistics in Machine Learning of Ergodic Itô Diffusions
He Zhang
J. Harlim
Xiantao Li
18
7
0
21 May 2021
Using Echo State Networks to Approximate Value Functions for Control
Allen G. Hart
Kevin R. Olding
Alexander M. G. Cox
Olga Isupova
Jonathan H.P Dawes
11
0
0
11 Feb 2021
Learning Sub-Patterns in Piecewise Continuous Functions
Anastasis Kratsios
Behnoosh Zamanlooy
22
10
0
29 Oct 2020
Echo State Networks trained by Tikhonov least squares are L2(μ) approximators of ergodic dynamical systems
Allen G. Hart
J. Hook
Jonathan H.P Dawes
27
46
0
14 May 2020
Approximation by Combinations of ReLU and Squared ReLU Ridge Functions with
ℓ
1
\ell^1
ℓ
1
and
ℓ
0
\ell^0
ℓ
0
Controls
Jason M. Klusowski
Andrew R. Barron
132
142
0
26 Jul 2016
1