ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2002.05692
  4. Cited By
Neuromorphologicaly-preserving Volumetric data encoding using VQ-VAE

Neuromorphologicaly-preserving Volumetric data encoding using VQ-VAE

13 February 2020
Petru-Daniel Tudosiu
Thomas Varsavsky
Richard Shaw
M. Graham
P. Nachev
Sebastien Ourselin
Carole H. Sudre
M. Jorge Cardoso
    MedIm
ArXivPDFHTML

Papers citing "Neuromorphologicaly-preserving Volumetric data encoding using VQ-VAE"

4 / 4 papers shown
Title
MotionAura: Generating High-Quality and Motion Consistent Videos using Discrete Diffusion
MotionAura: Generating High-Quality and Motion Consistent Videos using Discrete Diffusion
Onkar Susladkar
Jishu Sen Gupta
Chirag Sehgal
Sparsh Mittal
Rekha Singhal
DiffM
VGen
42
0
0
10 Oct 2024
Generative Aging of Brain Images with Diffeomorphic Registration
Generative Aging of Brain Images with Diffeomorphic Registration
Jingru Fu
A. Tzortzakakis
J. Barroso
E. Westman
D. Ferreira
R. Moreno
MedIm
40
8
0
31 May 2022
Bayesian Image Reconstruction using Deep Generative Models
Bayesian Image Reconstruction using Deep Generative Models
Razvan Marinescu
Daniel Moyer
Polina Golland
OOD
DiffM
23
39
0
08 Dec 2020
Real-Time Single Image and Video Super-Resolution Using an Efficient
  Sub-Pixel Convolutional Neural Network
Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network
Wenzhe Shi
Jose Caballero
Ferenc Huszár
J. Totz
Andrew P. Aitken
Rob Bishop
Daniel Rueckert
Zehan Wang
SupR
198
5,176
0
16 Sep 2016
1