Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2002.05688
Cited By
Classifying the classifier: dissecting the weight space of neural networks
13 February 2020
Gabriel Eilertsen
Daniel Jonsson
Timo Ropinski
Jonas Unger
Anders Ynnerman
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Classifying the classifier: dissecting the weight space of neural networks"
22 / 22 papers shown
Title
A Model Zoo on Phase Transitions in Neural Networks
Konstantin Schurholt
Léo Meynent
Yefan Zhou
Haiquan Lu
Yaoqing Yang
Damian Borth
70
0
0
25 Apr 2025
ORAL: Prompting Your Large-Scale LoRAs via Conditional Recurrent Diffusion
Rana Muhammad Shahroz Khan
Dongwen Tang
Pingzhi Li
Kai Wang
Tianlong Chen
AI4CE
220
0
0
31 Mar 2025
Adiabatic Fine-Tuning of Neural Quantum States Enables Detection of Phase Transitions in Weight Space
Vinicius Hernandes
Thomas Spriggs
Saqar Khaleefah
E. Greplova
52
1
0
21 Mar 2025
Adversarial Robustness in Parameter-Space Classifiers
Tamir Shor
Ethan Fetaya
Chaim Baskin
A. Bronstein
AAML
OOD
252
0
0
27 Feb 2025
Model Lakes
Koyena Pal
David Bau
Renée J. Miller
67
0
0
24 Feb 2025
Monomial Matrix Group Equivariant Neural Functional Networks
Hoang V. Tran
Thieu N. Vo
Tho H. Tran
An T. Nguyen
Tan M. Nguyen
54
5
0
18 Sep 2024
Towards Scalable and Versatile Weight Space Learning
Konstantin Schurholt
Michael W. Mahoney
Damian Borth
52
16
0
14 Jun 2024
Graph Metanetworks for Processing Diverse Neural Architectures
Derek Lim
Haggai Maron
Marc T. Law
Jonathan Lorraine
James Lucas
AI4CE
36
31
0
07 Dec 2023
Equivariant Deep Weight Space Alignment
Aviv Navon
Aviv Shamsian
Ethan Fetaya
Gal Chechik
Nadav Dym
Haggai Maron
35
21
0
20 Oct 2023
Sparsified Model Zoo Twins: Investigating Populations of Sparsified Neural Network Models
D. Honegger
Konstantin Schurholt
Damian Borth
37
4
0
26 Apr 2023
Permutation Equivariant Neural Functionals
Allan Zhou
Kaien Yang
Kaylee Burns
Adriano Cardace
Yiding Jiang
Samuel Sokota
J. Zico Kolter
Chelsea Finn
35
47
0
27 Feb 2023
Equivariant Architectures for Learning in Deep Weight Spaces
Aviv Navon
Aviv Shamsian
Idan Achituve
Ethan Fetaya
Gal Chechik
Haggai Maron
49
63
0
30 Jan 2023
On the Relationship Between Explanation and Prediction: A Causal View
Amir-Hossein Karimi
Krikamol Muandet
Simon Kornblith
Bernhard Schölkopf
Been Kim
FAtt
CML
40
14
0
13 Dec 2022
Model Zoos: A Dataset of Diverse Populations of Neural Network Models
Konstantin Schurholt
Diyar Taskiran
Boris Knyazev
Xavier Giró-i-Nieto
Damian Borth
60
29
0
29 Sep 2022
On the Strong Correlation Between Model Invariance and Generalization
Weijian Deng
Stephen Gould
Liang Zheng
OOD
34
16
0
14 Jul 2022
Hyper-Representations: Self-Supervised Representation Learning on Neural Network Weights for Model Characteristic Prediction
Konstantin Schurholt
Dimche Kostadinov
Damian Borth
SSL
41
14
0
28 Oct 2021
What Does Rotation Prediction Tell Us about Classifier Accuracy under Varying Testing Environments?
Weijian Deng
Stephen Gould
Liang Zheng
39
63
0
10 Jun 2021
Survey of XAI in digital pathology
Milda Pocevičiūtė
Gabriel Eilertsen
Claes Lundström
14
56
0
14 Aug 2020
An Investigation of the Weight Space to Monitor the Training Progress of Neural Networks
Konstantin Schurholt
Damian Borth
32
3
0
18 Jun 2020
Predicting Neural Network Accuracy from Weights
Thomas Unterthiner
Daniel Keysers
Sylvain Gelly
Olivier Bousquet
Ilya O. Tolstikhin
30
101
0
26 Feb 2020
Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data
Charles H. Martin
Tongsu Peng
Peng
Michael W. Mahoney
36
101
0
17 Feb 2020
Neural Architecture Search with Reinforcement Learning
Barret Zoph
Quoc V. Le
274
5,331
0
05 Nov 2016
1