Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2002.04839
Cited By
LaProp: Separating Momentum and Adaptivity in Adam
12 February 2020
Liu Ziyin
Zhikang T.Wang
Masahito Ueda
ODL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"LaProp: Separating Momentum and Adaptivity in Adam"
7 / 7 papers shown
Title
What makes a good feedforward computational graph?
Alex Vitvitskyi
J. G. Araújo
Marc Lackenby
Petar Velickovic
94
2
0
10 Feb 2025
Optimization for deep learning: theory and algorithms
Ruoyu Sun
ODL
64
168
0
19 Dec 2019
Adaptive Gradient Methods with Dynamic Bound of Learning Rate
Liangchen Luo
Yuanhao Xiong
Yan Liu
Xu Sun
ODL
34
600
0
26 Feb 2019
Stochastic Gradient Descent Optimizes Over-parameterized Deep ReLU Networks
Difan Zou
Yuan Cao
Dongruo Zhou
Quanquan Gu
ODL
114
448
0
21 Nov 2018
A general system of differential equations to model first order adaptive algorithms
André Belotto da Silva
Maxime Gazeau
34
33
0
31 Oct 2018
Closing the Generalization Gap of Adaptive Gradient Methods in Training Deep Neural Networks
Jinghui Chen
Dongruo Zhou
Yiqi Tang
Ziyan Yang
Yuan Cao
Quanquan Gu
ODL
55
193
0
18 Jun 2018
Dissecting Adam: The Sign, Magnitude and Variance of Stochastic Gradients
Lukas Balles
Philipp Hennig
62
163
0
22 May 2017
1