Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2002.04803
Cited By
Machine Learning in Python: Main developments and technology trends in data science, machine learning, and artificial intelligence
12 February 2020
S. Raschka
Joshua Patterson
Corey J. Nolet
AI4CE
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Machine Learning in Python: Main developments and technology trends in data science, machine learning, and artificial intelligence"
18 / 68 papers shown
Title
Accelerating Genetic Programming using GPUs
Vimarsh Sathia
Venkat R. Ganesh
Shankara Rao Thejaswi Nanditale
18
8
0
15 Oct 2021
LB-CNN: An Open Source Framework for Fast Training of Light Binary Convolutional Neural Networks using Chainer and Cupy
R. Dogaru
I. Dogaru
CVBM
21
3
0
25 Jun 2021
Ten Quick Tips for Deep Learning in Biology
Benjamin D. Lee
A. Gitter
Casey S. Greene
S. Raschka
F. Maguire
...
Alexandr A Kalinin
T. Triche
Benjamin J. Lengerich
Timothy J. Triche Jr
S. Boca
OOD
19
26
0
29 May 2021
Automated Detection of Abnormalities from an EEG Recording of Epilepsy Patients With a Compact Convolutional Neural Network
Takuhei Shoji
Noboru Yoshida
Toshihisa Tanaka
11
27
0
21 May 2021
GPU Semiring Primitives for Sparse Neighborhood Methods
Corey J. Nolet
Divye Gala
Edward Raff
Joe Eaton
Brad Rees
John Zedlewski
Tim Oates
19
4
0
13 Apr 2021
Leveraging Reinforcement Learning for evaluating Robustness of KNN Search Algorithms
Pramod Vadiraja
Christoph Balada
OOD
16
1
0
10 Feb 2021
Visual Framing of Science Conspiracy Videos: Integrating Machine Learning with Communication Theories to Study the Use of Color and Brightness
Kaiping Chen
Sang Jung Kim
Qiantong Gao
S. Raschka
19
8
0
01 Feb 2021
Efficient MPI-based Communication for GPU-Accelerated Dask Applications
Hari Subramoni
J. Hashmi
Hari Subramoni
D. Panda
14
3
0
21 Jan 2021
Concept Generalization in Visual Representation Learning
Mert Bulent Sariyildiz
Yannis Kalantidis
Diane Larlus
Alahari Karteek
SSL
28
50
0
10 Dec 2020
GPU Accelerated Exhaustive Search for Optimal Ensemble of Black-Box Optimization Algorithms
Jiwei Liu
Bojan Tunguz
Gilberto Titericz
19
8
0
08 Dec 2020
Bringing UMAP Closer to the Speed of Light with GPU Acceleration
Corey J. Nolet
V. Lafargue
Edward Raff
Thejaswi Nanditale
Tim Oates
John Zedlewski
Joshua Patterson
29
33
0
01 Aug 2020
Looking back to lower-level information in few-shot learning
Zhongjie Yu
S. Raschka
6
4
0
27 May 2020
Big-Data Science in Porous Materials: Materials Genomics and Machine Learning
K. Jablonka
D. Ongari
S. M. Moosavi
B. Smit
AI4CE
23
350
0
18 Jan 2020
Model Evaluation, Model Selection, and Algorithm Selection in Machine Learning
S. Raschka
77
764
0
13 Nov 2018
Incremental Network Quantization: Towards Lossless CNNs with Low-Precision Weights
Aojun Zhou
Anbang Yao
Yiwen Guo
Lin Xu
Yurong Chen
MQ
319
1,049
0
10 Feb 2017
Neural Architecture Search with Reinforcement Learning
Barret Zoph
Quoc V. Le
271
5,329
0
05 Nov 2016
Adversarial Machine Learning at Scale
Alexey Kurakin
Ian Goodfellow
Samy Bengio
AAML
261
3,109
0
04 Nov 2016
Adversarial examples in the physical world
Alexey Kurakin
Ian Goodfellow
Samy Bengio
SILM
AAML
287
5,835
0
08 Jul 2016
Previous
1
2