ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2002.04121
  4. Cited By
Logsmooth Gradient Concentration and Tighter Runtimes for Metropolized
  Hamiltonian Monte Carlo

Logsmooth Gradient Concentration and Tighter Runtimes for Metropolized Hamiltonian Monte Carlo

10 February 2020
Y. Lee
Ruoqi Shen
Kevin Tian
ArXivPDFHTML

Papers citing "Logsmooth Gradient Concentration and Tighter Runtimes for Metropolized Hamiltonian Monte Carlo"

10 / 10 papers shown
Title
Operator-Level Quantum Acceleration of Non-Logconcave Sampling
Operator-Level Quantum Acceleration of Non-Logconcave Sampling
Jiaqi Leng
Zhiyan Ding
Zherui Chen
Lin Lin
62
0
0
08 May 2025
When does Metropolized Hamiltonian Monte Carlo provably outperform
  Metropolis-adjusted Langevin algorithm?
When does Metropolized Hamiltonian Monte Carlo provably outperform Metropolis-adjusted Langevin algorithm?
Yuansi Chen
Khashayar Gatmiry
94
15
0
10 Apr 2023
Query lower bounds for log-concave sampling
Query lower bounds for log-concave sampling
Sinho Chewi
Jaume de Dios Pont
Jerry Li
Chen Lu
Shyam Narayanan
32
8
0
05 Apr 2023
Algorithmic Aspects of the Log-Laplace Transform and a Non-Euclidean
  Proximal Sampler
Algorithmic Aspects of the Log-Laplace Transform and a Non-Euclidean Proximal Sampler
Sivakanth Gopi
Y. Lee
Daogao Liu
Ruoqi Shen
Kevin Tian
17
7
0
13 Feb 2023
Condition-number-independent convergence rate of Riemannian Hamiltonian
  Monte Carlo with numerical integrators
Condition-number-independent convergence rate of Riemannian Hamiltonian Monte Carlo with numerical integrators
Yunbum Kook
Y. Lee
Ruoqi Shen
Santosh Vempala
38
12
0
13 Oct 2022
Quantum Algorithms for Sampling Log-Concave Distributions and Estimating
  Normalizing Constants
Quantum Algorithms for Sampling Log-Concave Distributions and Estimating Normalizing Constants
Andrew M. Childs
Tongyang Li
Jin-Peng Liu
C. Wang
Ruizhe Zhang
25
16
0
12 Oct 2022
Hamiltonian Monte Carlo for efficient Gaussian sampling: long and random
  steps
Hamiltonian Monte Carlo for efficient Gaussian sampling: long and random steps
Simon Apers
S. Gribling
Dániel Szilágyi
28
10
0
26 Sep 2022
Metropolis Adjusted Langevin Trajectories: a robust alternative to
  Hamiltonian Monte Carlo
Metropolis Adjusted Langevin Trajectories: a robust alternative to Hamiltonian Monte Carlo
L. Riou-Durand
Jure Vogrinc
18
14
0
26 Feb 2022
Sampling with Riemannian Hamiltonian Monte Carlo in a Constrained Space
Sampling with Riemannian Hamiltonian Monte Carlo in a Constrained Space
Yunbum Kook
Y. Lee
Ruoqi Shen
Santosh Vempala
11
38
0
03 Feb 2022
Asymptotic bias of inexact Markov Chain Monte Carlo methods in high
  dimension
Asymptotic bias of inexact Markov Chain Monte Carlo methods in high dimension
Alain Durmus
A. Eberle
24
19
0
02 Aug 2021
1