ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2002.03923
  4. Cited By
6DoF Object Pose Estimation via Differentiable Proxy Voting Loss

6DoF Object Pose Estimation via Differentiable Proxy Voting Loss

10 February 2020
Xin Yu
Zheyu Zhuang
Piotr Koniusz
Hongdong Li
ArXivPDFHTML

Papers citing "6DoF Object Pose Estimation via Differentiable Proxy Voting Loss"

5 / 5 papers shown
Title
Deep Learning-Based Object Pose Estimation: A Comprehensive Survey
Deep Learning-Based Object Pose Estimation: A Comprehensive Survey
Jian Liu
Wei Sun
Hui Yang
Zhiwen Zeng
Chongpei Liu
Jin Zheng
Xingyu Liu
Hossein Rahmani
N. Sebe
Ajmal Mian
51
15
0
13 May 2024
Depth-based 6DoF Object Pose Estimation using Swin Transformer
Depth-based 6DoF Object Pose Estimation using Swin Transformer
Zhujun Li
I. Stamos
ViT
40
11
0
03 Mar 2023
GaitStrip: Gait Recognition via Effective Strip-based Feature
  Representations and Multi-Level Framework
GaitStrip: Gait Recognition via Effective Strip-based Feature Representations and Multi-Level Framework
Ming Wang
Beibei Lin
Xianda Guo
Lincheng Li
Zhenguo Zhu
Jiande Sun
Shunli Zhang
Xin Yu
CVBM
45
14
0
08 Mar 2022
Deep Learning on Monocular Object Pose Detection and Tracking: A
  Comprehensive Overview
Deep Learning on Monocular Object Pose Detection and Tracking: A Comprehensive Overview
Zhaoxin Fan
Yazhi Zhu
Yulin He
Qi Sun
Hongyan Liu
Jun He
30
82
0
29 May 2021
D2D: Keypoint Extraction with Describe to Detect Approach
D2D: Keypoint Extraction with Describe to Detect Approach
Yurun Tian
Vassileios Balntas
Tony Ng
Axel Barroso Laguna
Y. Demiris
K. Mikolajczyk
49
59
0
27 May 2020
1