Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2002.03433
Cited By
Importance-Driven Deep Learning System Testing
9 February 2020
Simos Gerasimou
Hasan Ferit Eniser
A. Sen
Alper Çakan
AAML
VLM
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Importance-Driven Deep Learning System Testing"
19 / 19 papers shown
Title
Scope Compliance Uncertainty Estimate
Al-Harith Farhad
Ioannis Sorokos
Mohammed Naveed Akram
Koorosh Aslansefat
Daniel Schneider
26
0
0
17 Dec 2023
DeepGD: A Multi-Objective Black-Box Test Selection Approach for Deep Neural Networks
Zohreh Aghababaeyan
Manel Abdellatif
Mahboubeh Dadkhah
Lionel C. Briand
AAML
31
15
0
08 Mar 2023
Testing the Channels of Convolutional Neural Networks
Kang Choi
Donghyun Son
Younghoon Kim
Jiwon Seo
20
1
0
06 Mar 2023
Neuroevolutionary algorithms driven by neuron coverage metrics for semi-supervised classification
Roberto Santana
Ivan Hidalgo-Cenalmor
Unai Garciarena
A. Mendiburu
Jose A. Lozano
27
2
0
05 Mar 2023
Mimose: An Input-Aware Checkpointing Planner for Efficient Training on GPU
Jian-He Liao
Mingzhen Li
Qingxiao Sun
Jiwei Hao
F. Yu
...
Ye Tao
Zicheng Zhang
Hailong Yang
Zhongzhi Luan
D. Qian
23
4
0
06 Sep 2022
EasyScale: Accuracy-consistent Elastic Training for Deep Learning
Mingzhen Li
Wencong Xiao
Biao Sun
Hanyu Zhao
Hailong Yang
...
Xianyan Jia
Yi Liu
Yong Li
Wei Lin
D. Qian
14
7
0
30 Aug 2022
Guiding the retraining of convolutional neural networks against adversarial inputs
Francisco Durán
Silverio Martínez-Fernández
Michael Felderer
Xavier Franch
AAML
30
1
0
08 Jul 2022
Towards Training Reproducible Deep Learning Models
Boyuan Chen
Mingzhi Wen
Yong Shi
Dayi Lin
Gopi Krishnan Rajbahadur
Zhen Ming
Z. Jiang
SyDa
15
37
0
04 Feb 2022
Security for Machine Learning-based Software Systems: a survey of threats, practices and challenges
Huaming Chen
Muhammad Ali Babar
AAML
34
21
0
12 Jan 2022
Black-Box Testing of Deep Neural Networks Through Test Case Diversity
Zohreh Aghababaeyan
Manel Abdellatif
Lionel C. Briand
Ramesh S
M. Bagherzadeh
AAML
37
44
0
20 Dec 2021
A Review and Refinement of Surprise Adequacy
Michael Weiss
Rwiddhi Chakraborty
Paolo Tonella
AAML
AI4TS
16
16
0
10 Mar 2021
Machine Learning Model Development from a Software Engineering Perspective: A Systematic Literature Review
Giuliano Lorenzoni
Paulo S. C. Alencar
Nathalia Nascimento
Donald D. Cowan
16
18
0
15 Feb 2021
A Software Engineering Perspective on Engineering Machine Learning Systems: State of the Art and Challenges
G. Giray
30
120
0
14 Dec 2020
DeepSmartFuzzer: Reward Guided Test Generation For Deep Learning
Samet Demir
Hasan Ferit Eniser
A. Sen
AAML
11
28
0
24 Nov 2019
DeepSafe: A Data-driven Approach for Checking Adversarial Robustness in Neural Networks
D. Gopinath
Guy Katz
C. Păsăreanu
Clark W. Barrett
AAML
42
87
0
02 Oct 2017
A Survey on Deep Learning in Medical Image Analysis
G. Litjens
Thijs Kooi
B. Bejnordi
A. Setio
F. Ciompi
Mohsen Ghafoorian
Jeroen van der Laak
Bram van Ginneken
C. I. Sánchez
OOD
295
10,618
0
19 Feb 2017
Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks
Guy Katz
Clark W. Barrett
D. Dill
Kyle D. Julian
Mykel Kochenderfer
AAML
231
1,837
0
03 Feb 2017
Safety Verification of Deep Neural Networks
Xiaowei Huang
M. Kwiatkowska
Sen Wang
Min Wu
AAML
180
932
0
21 Oct 2016
Adversarial examples in the physical world
Alexey Kurakin
Ian Goodfellow
Samy Bengio
SILM
AAML
287
5,837
0
08 Jul 2016
1