Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2002.03155
Cited By
Random Features Strengthen Graph Neural Networks
8 February 2020
Ryoma Sato
M. Yamada
H. Kashima
GNN
AAML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Random Features Strengthen Graph Neural Networks"
50 / 50 papers shown
Title
Towards Invariance to Node Identifiers in Graph Neural Networks
Maya Bechler-Speicher
Moshe Eliasof
Carola-Bibiane Schönlieb
Ran Gilad-Bachrach
Amir Globerson
56
1
0
20 Feb 2025
Integrating Causality with Neurochaos Learning: Proposed Approach and Research Agenda
Nanjangud C. Narendra
Nithin Nagaraj
OOD
CML
39
0
0
23 Jan 2025
Training Hybrid Neural Networks with Multimode Optical Nonlinearities Using Digital Twins
Ilker Oguz
Louis J. E. Suter
J. Hsieh
Mustafa Yildirim
Niyazi Ulaş Dinç
Christophe Moser
D. Psaltis
53
2
0
14 Jan 2025
Towards Graph Foundation Models: A Study on the Generalization of Positional and Structural Encodings
Billy Joe Franks
Moshe Eliasof
Semih Cantürk
Guy Wolf
Carola-Bibiane Schönlieb
Sophie Fellenz
Marius Kloft
AI4CE
76
0
0
10 Dec 2024
Revisiting Random Walks for Learning on Graphs
Jinwoo Kim
Olga Zaghen
Ayhan Suleymanzade
Youngmin Ryou
Seunghoon Hong
59
0
0
01 Jul 2024
GOAL: A Generalist Combinatorial Optimization Agent Learner
Darko Drakulic
Sofia Michel
J. Andreoli
39
6
0
21 Jun 2024
Contextualized Messages Boost Graph Representations
Brian Godwin Lim
Galvin Brice Lim
Renzo Roel Tan
Kazushi Ikeda
AI4CE
70
1
0
19 Mar 2024
Isomorphic-Consistent Variational Graph Auto-Encoders for Multi-Level Graph Representation Learning
Hanxuan Yang
Qingchao Kong
Wenji Mao
BDL
13
0
0
09 Dec 2023
Random Entity Quantization for Parameter-Efficient Compositional Knowledge Graph Representation
Jiaang Li
Quan Wang
Yi Liu
L. Zhang
Zhendong Mao
27
0
0
24 Oct 2023
How Expressive are Graph Neural Networks in Recommendation?
Xuheng Cai
Lianghao Xia
Xubin Ren
Chao Huang
29
6
0
22 Aug 2023
The Expressive Power of Graph Neural Networks: A Survey
Bingxue Zhang
Changjun Fan
Shixuan Liu
Kuihua Huang
Xiang Zhao
Jin-Yu Huang
Zhong Liu
40
19
0
16 Aug 2023
Fractional Denoising for 3D Molecular Pre-training
Shi Feng
Yuyan Ni
Yanyan Lan
Zhiming Ma
Wei-Ying Ma
DiffM
AI4CE
42
25
0
20 Jul 2023
Expectation-Complete Graph Representations with Homomorphisms
Pascal Welke
Maximilian Thiessen
Fabian Jogl
Thomas Gärtner
18
5
0
09 Jun 2023
GeoTMI:Predicting quantum chemical property with easy-to-obtain geometry via positional denoising
Hyeonsu Kim
Jeheon Woo
Seonghwan Kim
Seokhyun Moon
Jun Hyeong Kim
Woo Youn Kim
AI4CE
30
6
0
28 Mar 2023
Descriptive complexity for distributed computing with circuits
Veeti Ahvonen
Damian Heiman
L. Hella
Antti Kuusisto
22
4
0
08 Mar 2023
Graph Positional Encoding via Random Feature Propagation
Moshe Eliasof
Fabrizio Frasca
Beatrice Bevilacqua
Eran Treister
Gal Chechik
Haggai Maron
22
18
0
06 Mar 2023
Equivariant Polynomials for Graph Neural Networks
Omri Puny
Derek Lim
B. Kiani
Haggai Maron
Y. Lipman
24
31
0
22 Feb 2023
A Theory of Link Prediction via Relational Weisfeiler-Leman on Knowledge Graphs
Xingyue Huang
Miguel Romero
.Ismail .Ilkan Ceylan
Pablo Barceló
29
24
0
04 Feb 2023
Graph Neural Networks can Recover the Hidden Features Solely from the Graph Structure
Ryoma Sato
31
5
0
26 Jan 2023
E(n)-equivariant Graph Neural Cellular Automata
G. Gala
Daniele Grattarola
Erik Quaeghebeur
GNN
40
3
0
25 Jan 2023
Exponentially Improving the Complexity of Simulating the Weisfeiler-Lehman Test with Graph Neural Networks
Anders Aamand
Justin Y. Chen
Piotr Indyk
Shyam Narayanan
R. Rubinfeld
Nicholas Schiefer
Sandeep Silwal
Tal Wagner
37
21
0
06 Nov 2022
Provably expressive temporal graph networks
Amauri Souza
Diego Mesquita
Samuel Kaski
Vikas K. Garg
89
54
0
29 Sep 2022
One Model, Any CSP: Graph Neural Networks as Fast Global Search Heuristics for Constraint Satisfaction
Jan Tonshoff
Berke Kisin
Jakob Lindner
Martin Grohe
GNN
16
22
0
22 Aug 2022
Universally Expressive Communication in Multi-Agent Reinforcement Learning
Matthew Morris
Thomas D. Barrett
Arnu Pretorius
24
4
0
14 Jun 2022
Shortest Path Networks for Graph Property Prediction
Ralph Abboud
Radoslav Dimitrov
.Ismail .Ilkan Ceylan
GNN
27
44
0
02 Jun 2022
Theory of Graph Neural Networks: Representation and Learning
Stefanie Jegelka
GNN
AI4CE
33
68
0
16 Apr 2022
SpeqNets: Sparsity-aware Permutation-equivariant Graph Networks
Christopher Morris
Gaurav Rattan
Sandra Kiefer
Siamak Ravanbakhsh
42
39
0
25 Mar 2022
Benchmarking Graphormer on Large-Scale Molecular Modeling Datasets
Yu Shi
Shuxin Zheng
Guolin Ke
Yifei Shen
Jiacheng You
Jiyan He
Shengjie Luo
Chang-Shu Liu
Di He
Tie-Yan Liu
AI4CE
35
65
0
09 Mar 2022
R-GCN: The R Could Stand for Random
Vic Degraeve
Gilles Vandewiele
F. Ongenae
Sofie Van Hoecke
GNN
21
13
0
04 Mar 2022
Equivariant and Stable Positional Encoding for More Powerful Graph Neural Networks
Hongya Wang
Haoteng Yin
Muhan Zhang
Pan Li
35
107
0
01 Mar 2022
A Theoretical Comparison of Graph Neural Network Extensions
Pál András Papp
Roger Wattenhofer
95
45
0
30 Jan 2022
Equivariant Quantum Graph Circuits
Péter Mernyei
K. Meichanetzidis
.Ismail .Ilkan Ceylan
36
8
0
10 Dec 2021
Node-wise Hardware Trojan Detection Based on Graph Learning
Kento Hasegawa
Kazuki Yamashita
Seira Hidano
Kazuhide Fukushima
Kazuo Hashimoto
N. Togawa
17
24
0
04 Dec 2021
On the Unreasonable Effectiveness of Feature propagation in Learning on Graphs with Missing Node Features
Emanuele Rossi
Henry Kenlay
Maria I. Gorinova
B. Chamberlain
Xiaowen Dong
M. Bronstein
23
87
0
23 Nov 2021
DropGNN: Random Dropouts Increase the Expressiveness of Graph Neural Networks
Pál András Papp
Karolis Martinkus
Lukas Faber
Roger Wattenhofer
GNN
17
138
0
11 Nov 2021
From Stars to Subgraphs: Uplifting Any GNN with Local Structure Awareness
Lingxiao Zhao
Wei Jin
L. Akoglu
Neil Shah
GNN
22
160
0
07 Oct 2021
Equivariant Subgraph Aggregation Networks
Beatrice Bevilacqua
Fabrizio Frasca
Derek Lim
Balasubramaniam Srinivasan
Chen Cai
G. Balamurugan
M. Bronstein
Haggai Maron
48
174
0
06 Oct 2021
Reconstruction for Powerful Graph Representations
Leonardo Cotta
Christopher Morris
Bruno Ribeiro
AI4CE
127
78
0
01 Oct 2021
Learning General Optimal Policies with Graph Neural Networks: Expressive Power, Transparency, and Limits
Simon Ståhlberg
Blai Bonet
Hector Geffner
27
48
0
21 Sep 2021
Graph Neural Networks for Graph Drawing
Matteo Tiezzi
Gabriele Ciravegna
Marco Gori
21
20
0
21 Sep 2021
On Positional and Structural Node Features for Graph Neural Networks on Non-attributed Graphs
Hejie Cui
Zijie Lu
Pan Li
Carl Yang
13
80
0
03 Jul 2021
Simple GNN Regularisation for 3D Molecular Property Prediction & Beyond
Jonathan Godwin
Michael Schaarschmidt
Alex Gaunt
Alvaro Sanchez-Gonzalez
Yulia Rubanova
Petar Velivcković
J. Kirkpatrick
Peter W. Battaglia
33
60
0
15 Jun 2021
Graph Neural Networks with Local Graph Parameters
Pablo Barceló
Floris Geerts
Juan L. Reutter
Maksimilian Ryschkov
24
64
0
12 Jun 2021
Breaking the Limits of Message Passing Graph Neural Networks
M. Balcilar
Pierre Héroux
Benoit Gaüzère
Pascal Vasseur
Sébastien Adam
P. Honeine
13
121
0
08 Jun 2021
The Logic of Graph Neural Networks
Martin Grohe
AI4CE
15
87
0
29 Apr 2021
Combinatorial optimization and reasoning with graph neural networks
Quentin Cappart
Didier Chételat
Elias Boutros Khalil
Andrea Lodi
Christopher Morris
Petar Velickovic
AI4CE
32
346
0
18 Feb 2021
Improving Graph Neural Network Expressivity via Subgraph Isomorphism Counting
Giorgos Bouritsas
Fabrizio Frasca
S. Zafeiriou
M. Bronstein
46
423
0
16 Jun 2020
How hard is to distinguish graphs with graph neural networks?
Andreas Loukas
GNN
25
6
0
13 May 2020
Random Features for Kernel Approximation: A Survey on Algorithms, Theory, and Beyond
Fanghui Liu
Xiaolin Huang
Yudong Chen
Johan A. K. Suykens
BDL
34
172
0
23 Apr 2020
Principal Neighbourhood Aggregation for Graph Nets
Gabriele Corso
Luca Cavalleri
Dominique Beaini
Pietro Lió
Petar Velickovic
GNN
13
649
0
12 Apr 2020
1