Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2002.02842
Cited By
Assessing the Adversarial Robustness of Monte Carlo and Distillation Methods for Deep Bayesian Neural Network Classification
7 February 2020
Meet P. Vadera
Satya Narayan Shukla
B. Jalaeian
Benjamin M. Marlin
AAML
BDL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Assessing the Adversarial Robustness of Monte Carlo and Distillation Methods for Deep Bayesian Neural Network Classification"
6 / 6 papers shown
Title
A.I. Robustness: a Human-Centered Perspective on Technological Challenges and Opportunities
Andrea Tocchetti
Lorenzo Corti
Agathe Balayn
Mireia Yurrita
Philip Lippmann
Marco Brambilla
Jie-jin Yang
27
10
0
17 Oct 2022
Tackling covariate shift with node-based Bayesian neural networks
Trung Trinh
Markus Heinonen
Luigi Acerbi
Samuel Kaski
BDL
UQCV
8
6
0
06 Jun 2022
Challenges and Opportunities in Approximate Bayesian Deep Learning for Intelligent IoT Systems
Meet P. Vadera
Benjamin M. Marlin
UQCV
BDL
18
5
0
03 Dec 2021
URSABench: Comprehensive Benchmarking of Approximate Bayesian Inference Methods for Deep Neural Networks
Meet P. Vadera
Adam D. Cobb
B. Jalaeian
Benjamin M. Marlin
BDL
UQCV
27
16
0
08 Jul 2020
Adversarial Machine Learning at Scale
Alexey Kurakin
Ian Goodfellow
Samy Bengio
AAML
296
3,112
0
04 Nov 2016
Adversarial examples in the physical world
Alexey Kurakin
Ian Goodfellow
Samy Bengio
SILM
AAML
287
5,842
0
08 Jul 2016
1