Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2002.02561
Cited By
Spectrum Dependent Learning Curves in Kernel Regression and Wide Neural Networks
7 February 2020
Blake Bordelon
Abdulkadir Canatar
C. Pehlevan
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Spectrum Dependent Learning Curves in Kernel Regression and Wide Neural Networks"
42 / 42 papers shown
Title
Scaling Laws and Representation Learning in Simple Hierarchical Languages: Transformers vs. Convolutional Architectures
Francesco Cagnetta
Alessandro Favero
Antonio Sclocchi
M. Wyart
26
0
0
11 May 2025
Learning curves theory for hierarchically compositional data with power-law distributed features
Francesco Cagnetta
Hyunmo Kang
M. Wyart
36
0
0
11 May 2025
Information-theoretic reduction of deep neural networks to linear models in the overparametrized proportional regime
Francesco Camilli
D. Tieplova
Eleonora Bergamin
Jean Barbier
106
0
0
06 May 2025
Generalization through variance: how noise shapes inductive biases in diffusion models
John J. Vastola
DiffM
141
1
0
16 Apr 2025
How Feature Learning Can Improve Neural Scaling Laws
Blake Bordelon
Alexander B. Atanasov
C. Pehlevan
54
12
0
26 Sep 2024
Overfitting Behaviour of Gaussian Kernel Ridgeless Regression: Varying Bandwidth or Dimensionality
Marko Medvedev
Gal Vardi
Nathan Srebro
62
3
0
05 Sep 2024
Restoring balance: principled under/oversampling of data for optimal classification
Emanuele Loffredo
Mauro Pastore
Simona Cocco
R. Monasson
37
9
0
15 May 2024
Characterizing Overfitting in Kernel Ridgeless Regression Through the Eigenspectrum
Tin Sum Cheng
Aurélien Lucchi
Anastasis Kratsios
David Belius
34
7
0
02 Feb 2024
Modify Training Directions in Function Space to Reduce Generalization Error
Yi Yu
Wenlian Lu
Boyu Chen
19
0
0
25 Jul 2023
Task Arithmetic in the Tangent Space: Improved Editing of Pre-Trained Models
Guillermo Ortiz-Jiménez
Alessandro Favero
P. Frossard
MoMe
42
103
0
22 May 2023
Sparsity-depth Tradeoff in Infinitely Wide Deep Neural Networks
Chanwoo Chun
Daniel D. Lee
BDL
33
2
0
17 May 2023
Do deep neural networks have an inbuilt Occam's razor?
Chris Mingard
Henry Rees
Guillermo Valle Pérez
A. Louis
UQCV
BDL
19
15
0
13 Apr 2023
Dynamics of Finite Width Kernel and Prediction Fluctuations in Mean Field Neural Networks
Blake Bordelon
C. Pehlevan
MLT
38
29
0
06 Apr 2023
On the Optimality of Misspecified Spectral Algorithms
Hao Zhang
Yicheng Li
Qian Lin
16
14
0
27 Mar 2023
Gradient flow in the gaussian covariate model: exact solution of learning curves and multiple descent structures
Antione Bodin
N. Macris
34
4
0
13 Dec 2022
A Solvable Model of Neural Scaling Laws
A. Maloney
Daniel A. Roberts
J. Sully
31
51
0
30 Oct 2022
On Kernel Regression with Data-Dependent Kernels
James B. Simon
BDL
13
3
0
04 Sep 2022
Benign, Tempered, or Catastrophic: A Taxonomy of Overfitting
Neil Rohit Mallinar
James B. Simon
Amirhesam Abedsoltan
Parthe Pandit
M. Belkin
Preetum Nakkiran
24
37
0
14 Jul 2022
Target alignment in truncated kernel ridge regression
Arash A. Amini
R. Baumgartner
Dai Feng
9
3
0
28 Jun 2022
Learning sparse features can lead to overfitting in neural networks
Leonardo Petrini
Francesco Cagnetta
Eric Vanden-Eijnden
M. Wyart
MLT
29
23
0
24 Jun 2022
Why Quantization Improves Generalization: NTK of Binary Weight Neural Networks
Kaiqi Zhang
Ming Yin
Yu-Xiang Wang
MQ
16
4
0
13 Jun 2022
Self-Consistent Dynamical Field Theory of Kernel Evolution in Wide Neural Networks
Blake Bordelon
C. Pehlevan
MLT
24
79
0
19 May 2022
Sharp Asymptotics of Kernel Ridge Regression Beyond the Linear Regime
Hong Hu
Yue M. Lu
51
15
0
13 May 2022
An Equivalence Principle for the Spectrum of Random Inner-Product Kernel Matrices with Polynomial Scalings
Yue M. Lu
H. Yau
19
24
0
12 May 2022
Learning curves for the multi-class teacher-student perceptron
Elisabetta Cornacchia
Francesca Mignacco
R. Veiga
Cédric Gerbelot
Bruno Loureiro
Lenka Zdeborová
12
21
0
22 Mar 2022
Overview frequency principle/spectral bias in deep learning
Z. Xu
Yaoyu Zhang
Tao Luo
FaML
25
65
0
19 Jan 2022
Separation of Scales and a Thermodynamic Description of Feature Learning in Some CNNs
Inbar Seroussi
Gadi Naveh
Z. Ringel
30
49
0
31 Dec 2021
Learning Curves for Continual Learning in Neural Networks: Self-Knowledge Transfer and Forgetting
Ryo Karakida
S. Akaho
CLL
24
11
0
03 Dec 2021
Neural Networks as Kernel Learners: The Silent Alignment Effect
Alexander B. Atanasov
Blake Bordelon
C. Pehlevan
MLT
22
74
0
29 Oct 2021
Locality defeats the curse of dimensionality in convolutional teacher-student scenarios
Alessandro Favero
Francesco Cagnetta
M. Wyart
24
31
0
16 Jun 2021
A self consistent theory of Gaussian Processes captures feature learning effects in finite CNNs
Gadi Naveh
Z. Ringel
SSL
MLT
23
31
0
08 Jun 2021
A Neural Pre-Conditioning Active Learning Algorithm to Reduce Label Complexity
Seo Taek Kong
Soomin Jeon
Dongbin Na
Jaewon Lee
Honglak Lee
Kyu-Hwan Jung
15
6
0
08 Apr 2021
Learning curves of generic features maps for realistic datasets with a teacher-student model
Bruno Loureiro
Cédric Gerbelot
Hugo Cui
Sebastian Goldt
Florent Krzakala
M. Mézard
Lenka Zdeborová
25
135
0
16 Feb 2021
Learning Curve Theory
Marcus Hutter
132
58
0
08 Feb 2021
Frequency Principle in Deep Learning Beyond Gradient-descent-based Training
Yuheng Ma
Zhi-Qin John Xu
Jiwei Zhang
19
7
0
04 Jan 2021
On 1/n neural representation and robustness
Josue Nassar
Piotr A. Sokól
SueYeon Chung
K. Harris
Il Memming Park
AAML
OOD
16
23
0
08 Dec 2020
Fourier-domain Variational Formulation and Its Well-posedness for Supervised Learning
Tao Luo
Zheng Ma
Zhiwei Wang
Zhi-Qin John Xu
Yaoyu Zhang
OOD
27
4
0
06 Dec 2020
Associative Memory in Iterated Overparameterized Sigmoid Autoencoders
Yibo Jiang
C. Pehlevan
11
13
0
30 Jun 2020
An analytic theory of shallow networks dynamics for hinge loss classification
Franco Pellegrini
Giulio Biroli
19
19
0
19 Jun 2020
Fourier Features Let Networks Learn High Frequency Functions in Low Dimensional Domains
Matthew Tancik
Pratul P. Srinivasan
B. Mildenhall
Sara Fridovich-Keil
N. Raghavan
Utkarsh Singhal
R. Ramamoorthi
Jonathan T. Barron
Ren Ng
60
2,335
0
18 Jun 2020
Kernel Alignment Risk Estimator: Risk Prediction from Training Data
Arthur Jacot
Berfin cSimcsek
Francesco Spadaro
Clément Hongler
Franck Gabriel
17
66
0
17 Jun 2020
Towards Understanding the Spectral Bias of Deep Learning
Yuan Cao
Zhiying Fang
Yue Wu
Ding-Xuan Zhou
Quanquan Gu
23
214
0
03 Dec 2019
1