Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2002.01810
Cited By
Understanding the Decision Boundary of Deep Neural Networks: An Empirical Study
5 February 2020
David Mickisch
F. Assion
Florens Greßner
W. Günther
M. Motta
AAML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Understanding the Decision Boundary of Deep Neural Networks: An Empirical Study"
8 / 8 papers shown
Title
A New Defense Against Adversarial Images: Turning a Weakness into a Strength
Tao Yu
Shengyuan Hu
Chuan Guo
Wei-Lun Chao
Kilian Q. Weinberger
AAML
87
103
0
16 Oct 2019
Predicting the Generalization Gap in Deep Networks with Margin Distributions
Yiding Jiang
Dilip Krishnan
H. Mobahi
Samy Bengio
UQCV
63
199
0
28 Sep 2018
Deep k-Nearest Neighbors: Towards Confident, Interpretable and Robust Deep Learning
Nicolas Papernot
Patrick McDaniel
OOD
AAML
81
505
0
13 Mar 2018
Evasion Attacks against Machine Learning at Test Time
Battista Biggio
Igino Corona
Davide Maiorca
B. Nelson
Nedim Srndic
Pavel Laskov
Giorgio Giacinto
Fabio Roli
AAML
93
2,140
0
21 Aug 2017
Adversarial Examples, Uncertainty, and Transfer Testing Robustness in Gaussian Process Hybrid Deep Networks
John Bradshaw
A. G. Matthews
Zoubin Ghahramani
BDL
AAML
83
171
0
08 Jul 2017
Parseval Networks: Improving Robustness to Adversarial Examples
Moustapha Cissé
Piotr Bojanowski
Edouard Grave
Yann N. Dauphin
Nicolas Usunier
AAML
109
800
0
28 Apr 2017
On Detecting Adversarial Perturbations
J. H. Metzen
Tim Genewein
Volker Fischer
Bastian Bischoff
AAML
49
947
0
14 Feb 2017
Intriguing properties of neural networks
Christian Szegedy
Wojciech Zaremba
Ilya Sutskever
Joan Bruna
D. Erhan
Ian Goodfellow
Rob Fergus
AAML
157
14,831
1
21 Dec 2013
1