ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2002.01100
  4. Cited By
Efficient, Noise-Tolerant, and Private Learning via Boosting

Efficient, Noise-Tolerant, and Private Learning via Boosting

4 February 2020
Mark Bun
M. Carmosino
Jessica Sorrell
    FedML
ArXivPDFHTML

Papers citing "Efficient, Noise-Tolerant, and Private Learning via Boosting"

5 / 5 papers shown
Title
PILLAR: How to make semi-private learning more effective
PILLAR: How to make semi-private learning more effective
Francesco Pinto
Yaxian Hu
Fanny Yang
Amartya Sanyal
49
11
0
06 Jun 2023
Differentially-Private Bayes Consistency
Differentially-Private Bayes Consistency
Olivier Bousquet
Haim Kaplan
A. Kontorovich
Yishay Mansour
Shay Moran
Menachem Sadigurschi
Uri Stemmer
18
0
0
08 Dec 2022
Reproducibility in Learning
Reproducibility in Learning
R. Impagliazzo
Rex Lei
T. Pitassi
Jessica Sorrell
26
43
0
20 Jan 2022
Being Properly Improper
Being Properly Improper
Tyler Sypherd
Richard Nock
Lalitha Sankar
FaML
39
10
0
18 Jun 2021
An Equivalence Between Private Classification and Online Prediction
An Equivalence Between Private Classification and Online Prediction
Mark Bun
Roi Livni
Shay Moran
28
75
0
01 Mar 2020
1