ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2002.00790
  4. Cited By
Data-Driven Discovery of Coarse-Grained Equations

Data-Driven Discovery of Coarse-Grained Equations

30 January 2020
Joseph Bakarji
D. Tartakovsky
ArXivPDFHTML

Papers citing "Data-Driven Discovery of Coarse-Grained Equations"

6 / 6 papers shown
Title
Machine Learning for Partial Differential Equations
Machine Learning for Partial Differential Equations
Steven L. Brunton
J. Nathan Kutz
AI4CE
45
20
0
30 Mar 2023
Combining physics-based and data-driven techniques for reliable hybrid
  analysis and modeling using the corrective source term approach
Combining physics-based and data-driven techniques for reliable hybrid analysis and modeling using the corrective source term approach
Sindre Stenen Blakseth
Adil Rasheed
T. Kvamsdal
Omer San
AI4CE
26
31
0
07 Jun 2022
A posteriori learning for quasi-geostrophic turbulence parametrization
A posteriori learning for quasi-geostrophic turbulence parametrization
Hugo Frezat
Julien Le Sommer
Ronan Fablet
G. Balarac
Redouane Lguensat
27
56
0
08 Apr 2022
Online Weak-form Sparse Identification of Partial Differential Equations
Online Weak-form Sparse Identification of Partial Differential Equations
Daniel Messenger
E. Dall’Anese
David M. Bortz
41
13
0
08 Mar 2022
Discovering Governing Equations from Partial Measurements with Deep
  Delay Autoencoders
Discovering Governing Equations from Partial Measurements with Deep Delay Autoencoders
Joseph Bakarji
Kathleen P. Champion
J. Nathan Kutz
Steven L. Brunton
40
82
0
13 Jan 2022
Information-geometry of physics-informed statistical manifolds and its
  use in data assimilation
Information-geometry of physics-informed statistical manifolds and its use in data assimilation
F. Boso
D. Tartakovsky
AI4CE
47
8
0
01 Mar 2021
1