ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2001.10965
  4. Cited By
Maximum likelihood estimation and uncertainty quantification for
  Gaussian process approximation of deterministic functions

Maximum likelihood estimation and uncertainty quantification for Gaussian process approximation of deterministic functions

29 January 2020
Toni Karvonen
George Wynne
Filip Tronarp
Chris J. Oates
Simo Särkkä
ArXivPDFHTML

Papers citing "Maximum likelihood estimation and uncertainty quantification for Gaussian process approximation of deterministic functions"

8 / 8 papers shown
Title
From Target Tracking to Targeting Track -- Part III: Stochastic Process Modeling and Online Learning
Tiancheng Li
Jingyuan Wang
Guchong Li
Dengwei Gao
55
2
0
03 Mar 2025
Smoothness Estimation for Whittle-Matérn Processes on Closed
  Riemannian Manifolds
Smoothness Estimation for Whittle-Matérn Processes on Closed Riemannian Manifolds
Moritz Korte-Stapff
Toni Karvonen
Eric Moulines
29
0
0
31 Dec 2023
Interpolation with the polynomial kernels
Interpolation with the polynomial kernels
G. Elefante
W. Erb
Francesco Marchetti
E. Perracchione
D. Poggiali
G. Santin
24
1
0
15 Dec 2022
An asymptotic study of the joint maximum likelihood estimation of the
  regularity and the amplitude parameters of a Mat{é}rn model on the circle
An asymptotic study of the joint maximum likelihood estimation of the regularity and the amplitude parameters of a Mat{é}rn model on the circle
S. Petit
29
1
0
16 Sep 2022
Asymptotic Bounds for Smoothness Parameter Estimates in Gaussian Process
  Interpolation
Asymptotic Bounds for Smoothness Parameter Estimates in Gaussian Process Interpolation
Toni Karvonen
27
1
0
10 Mar 2022
Bayesian Numerical Methods for Nonlinear Partial Differential Equations
Bayesian Numerical Methods for Nonlinear Partial Differential Equations
Junyang Wang
Jon Cockayne
O. Chkrebtii
T. Sullivan
Chris J. Oates
59
19
0
22 Apr 2021
Small Sample Spaces for Gaussian Processes
Small Sample Spaces for Gaussian Processes
Toni Karvonen
22
13
0
04 Mar 2021
Bayesian ODE Solvers: The Maximum A Posteriori Estimate
Bayesian ODE Solvers: The Maximum A Posteriori Estimate
Filip Tronarp
Simo Sarkka
Philipp Hennig
43
42
0
01 Apr 2020
1